Механизм биологического действия радиоактивных излучений сложен и до конца не изучен.

В начале 1940-х гг. исследования А. А. Дробкова, изучавшего рост клубеньковых бактерий вокруг источника радиоактивного излучения, показали как губительное, так и стимулирующее воздействие радиоактивного излучения одновременно. Все зависит от дозовой нагрузки излучения на бактерии.

Многочисленные исследования биологов, медиков, физиков позволили представить механизмы воздействия ионизирующего излучения и установить различие воздействия разных типов ионизирующих частиц на биологические объекты.

Повреждения могут происходить на разных уровнях биологической организации.

Радиочувствительность живых организмов значительно различается. Смертельная доза для бактерий составляет 10 4 Гр, для насекомых - 10 3 Гр, для млекопитающих - 10 Гр. Для сельскохозяйственных животных разовые дозы облучения 1,5-2 Гр могут приводить к возникновению лучевой болезни, дозы 0,1 Гр/год - к проявлению генетических эффектов. Для растений радиобиологические повреждения проявляются в следующем: на клеточном уровне в виде цитогенетических повреждений, оцениваемых по снижению митотической активности, увеличению числа хромосомных аберраций и изменению длительности митотического цикла клеток апикальной меристемы. В фитоценозе - это выпадение наиболее радиочувствительных видов растений, изменение числа растений и запасов фитомассы на единице площади, нарушение течения нормальных сукцессионных процессов и т. д. Необходимо отметить, что при воздействии на растения радиационных излучений в интервале невысоких доз (1-5 Гр для растений и 5-10 Гр для семян) происходит явление радиостимуляции, т. е. ускорение темпов роста и развития растений (Агроэкология, 2000).

Специфика радиационного поражения экосистем в зоне аварии на Чернобыльской АЭС проявлялась в следующем: хвойные леса пострадали при дозе облучения в 10 Гр/год (внешние проявления - «рыжий лес»), лиственные - при 30 Гр/год и агроэкосистемы - при 70 Гр/год (Алексахин, 1993).

Доза облучения человека определяется радиоэкологической характеристикой среды его обитания, потребляемых продуктов питания и воды. Максимальная доза излучения, не причиняющая вреда организму человека при многократном действии, равна 0,003 Гр в неделю, а при единовременном действии - 0,025 Гр.

Последствия радиационного воздействия на здоровье населения впервые детально были изучены в Японии после атомных бомбардировок Хиросимы и Нагасаки. В результате проведенных исследований были сделаны следующие выводы (Ревич и др., 2004):

  1. самое серьезное последствие (исходя из величины дозы на 1 млн жителей) - рак молочной железы у женщин;
  2. наиболее частый вид нефатального рака - рак щитовидной железы;
  3. общее число случаев возникновения рака, обусловленного облучением, у женщин на 50 % выше, чем у мужчин.

Исследованиями, проведенными в различных странах после аварии на Чернобыльской АЭС, было показано, что эффект облучения щитовидной железы радиоактивными изотопами йода в несколько раз превосходит эффекты облучения от внешнего источника излучения. На территории России в 1986 г. подверглось облучению радиоизотопами йода более 5 млн человек. Все эти люди имеют повышенную вероятность заболевания радиационно-индуцированным раком щитовидной железы. По расчетам В. К. Иванова, А. Ф. Цыба и др. (2004), только в Брянской области порядка 4000 человек имеют значение индивидуального атрибутивного (т. е. дополнительного) пожизненного риска более 99 %. Для других групп населения эта вероятность ниже.

Последствия радиационного загрязнения могут проявляться не только в возникновении дополнительных случаев заболевания раком щитовидной железы, но и в изменениях ее функции. В отдаленные сроки после воздействия ионизирующего излучения возможно развитие гипотиреоза и другой патологии. Наиболее выражены такие последствия радиационного воздействия (внутреннего облучения щитовидной железы радионуклидами йода) в Уральском регионе, где авария произошла более 50 лет тому назад.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.сайт/

Биологическое действие радиации

1. Прямое и косвенное действие ионизирующего излучения

Радиоволны, световые волны, тепловая энергия солнца - все это разновидности излучений. Однако, излучение будет ионизирующим, если оно способно разрывать химические связи молекул, из которых состоят ткани живого организма, и, как следствие, вызывать биологические изменения. Действие ионизирующего излучения происходит на атомном или молекулярном уровне, независимо от того, подвергаемся ли мы внешнему облучению, или получаем радиоактивные вещества с пищей и водой, что нарушает баланс биологических процессов в организме и приводит к неблагоприятным последствиям. Биологические эффекты влияния" радиации на организм человека обусловлены взаимодействием энергии излучения с биологической тканью. Энергию непосредственно передаваемую атомам и молекулам биотканей называют прямым действием радиации. Некоторые клетки из-за неравномерности распределения энергии излучения будут значительно повреждены.

Одним из прямых эффектов является канцерогенез или развитие онкологических заболеваний. Раковая опухоль возникает, когда соматическая клетка выходит из-под контроля организма и начинает активно делиться. Первопричиной этого являются нарушения в генетическом механизме, называемые мутациями. При делении раковая клетка производит только раковые клетки. Одним из наиболее чувствительных органов к воздействию радиации является щитовидная железа. Поэтому биоткань этого органа наиболее уязвима в плане развития рака. Не менее восприимчива к влиянию излучения кровь. Лейкоз или рак крови - один из распространенных эффектов прямого воздействия радиации. Заряженные частицы проникают в ткани организма, теряют свою энергию вследствие электрических взаимодействий с электронами атомов. Электрическое взаимодействие сопровождает процесс ионизации (вырывание электрона из нейтрального атома).

Физико-химические изменения сопровождают возникновение в организме чрезвычайно опасных «свободных радикалов».

Кроме прямого ионизирующего облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды. При радиолизе возникают свободные радикалы - определенные атомы или группы атомов, обладающие высокой химической активностью. Основным признаком свободных радикалов являются избыточные или неспаренные электроны. Такие электроны легко смещаются со своих орбит и могут активно участвовать в химической реакции. Важно то, что весьма незначительные внешние изменения могут привести к значительным изменениям биохимических свойств клеток. К примеру, если обычная молекула кислорода захватит свободный электрон, то она превращается в высокоактивный свободный радикал - супероксид. Кроме того, имеются и такие активные соединения, как перекись водорода, гидроокисел и атомарный кислород. Большая часть свободных радикалов нейтральна, но некоторые из них могут иметь положительный или отрицательный заряд.

Если число свободных радикалов мало, то организм имеет возможность их контролировать. Если же их становится слишком много, то нарушается работа защитных систем, жизнедеятельность отдельных функций организма. Повреждения, вызванные свободными радикалами, быстро увеличиваются по принципу цепной реакции. Попадая в клетки, они нарушают баланс кальция и кодирование генетической информации. Такие явления могут привести к сбоям в синтезе белков, что является жизненно важной функцией всего организма, т.к. неполноценные белки нарушают работу иммунной системы. Основные фильтры иммунной системы - лимфатические узлы работают в перенапряженном режиме и не успевают их отделять. Таким образом, ослабляются защитные барьеры и в организме создаются благоприятные условия для размножения вирусов микробов и раковых клеток.

Свободные радикалы, вызывающие химические реакции, вовлекают в этот процесс многие молекулы, не затронутые излучением. Поэтому производимый излучением эффект обусловлен не только количеством поглощенной энергии, а и той формой, в которой эта энергия передается. Никакой другой вид энергии, поглощенный биообъектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение. Однако природа этого явления такова, что все процессы, в том числе и биологические, уравновешиваются. Химические изменения возникают в результате взаимодействия свободных радикалов друг с другом или со «здоровыми» молекулами Биохимические изменения происходят как в момент облучения, так и на протяжении многих лет, что приводит к гибели клеток.

Наш организм в противовес описанным выше процессам вырабатывает особые вещества, которые являются своего рода «чистильщиками».

Эти вещества (ферменты) в организме способны захватывать свободные электроны, не превращаясь при этом в свободные радикалы. В нормальном состоянии в организме поддерживается баланс между появлением свободных радикалов и ферментами. Ионизирующее излучение нарушает это равновесие, стимулирует процессы роста свободных радикалов и приводит к негативным последствиям. Активизировать процессы поглощения свободных радикалов можно, включив в рацион питания антиокислители, витамины А, Е, С или препараты, содержащие селен. Эти вещества обезвреживают свободные радикалы, поглощая их в больших количествах.

2. Воздействие ионизирующего излучения на отдельные органы и организм в целом

В структуре организма можно выделить два класса систем: управляющую (нервная, эндокринная, иммунная) и жизнеобеспечивающую (дыхательная, сердечно-сосудистая, пищеварительная). Все основные обменные (метаболические) процессы и каталитические (ферментативные) реакции происходят на клеточном и молекулярном уровнях. Уровни организации организма функционируют в тесном взаимодействии и взаимовлиянии со стороны управляющих систем. Большинство естественных факторов воздействуют сначала на вышестоящие уровни, затем через определенные органы и ткани - на клеточно-молекулярные уровни. После этого начинается ответная фаза, сопровождающаяся коррективами на всех уровнях.

Взаимодействие радиации с организмом начинается с молекулярного уровня. Прямое воздействие ионизирующего излучения, поэтому является более специфичным. Повышение уровня окислителей характерно и для других воздействий. Известно, что различные симптомы (температура, головная боль и др.) встречаются при многих болезнях и причины их различны. Это затрудняет установление диагноза. Поэтому, если в результате вредного воздействия на организм радиации не возникает определенной болезни, установить причину более отдаленных последствий трудно, поскольку они теряют свою специфичность.

Радиочувствительность различных тканей организма зависит от биосинтетических процессов и связанной с ними ферментативной активностью. Поэтому наиболее высокой радиопоражаемостью отличаются клетки костного мозга, лимфатических узлов, половые клетки. Кровеносная система и красный костный мозг наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах 0,5-1 Гр. Однако, они обладают способностью восстанавливаться и если не все клетки поражены, кровеносная система может восстановить свои функции. Репродуктивные органы, например, семенники, так же отличаются повышенной радиочувствительностью. Облучение свыше 2 Гр приводит к постоянной стерильности. Только через много лет они могут полноценно функционировать. Яичники менее чувствительны, по крайней мере, у взрослых женщин. Но однократная доза более 3 Гр все же приводит к их стерильности, хотя большие дозы при неоднократном облучении не сказываются на способности к деторождению.

Очень восприимчив к излучению хрусталик глаза. Погибая, клетки хрусталика становятся непрозрачными, разрастаясь, приводят к катаракте, а затем и к полной слепоте. Это может произойти при дозах около 2 Гр.

Радиочувствительность организма зависит от его возраста. Небольшие дозы при облучении детей могут замедлить или вовсе остановить у них рост костей. Чем меньше возраст ребенка, тем сильнее подавляется рост скелета. Облучение мозга ребенка может вызвать изменения в его характере, привести к потере памяти. Кости и мозг взрослого человека способны выдержать гораздо большие дозы. Относительно большие дозы способны выдерживать большинство органов. Почки выдерживают дозу около 20 Гр, полученную в течение месяца, печень - около 40 Гр, мочевой пузырь - 50 Гр, а зрелая хрящевая ткань - до 70 Гр. Чем моложе организм, тем при прочих равных условиях, он более чувствителен к воздействию радиации.

Видовая радиочувствительность возрастает по мере усложнения организма. Это объясняется тем, что в сложных организмах больше слабых звеньев, вызывающих цепные реакции выживания. Этому способствуют и более сложные системы управления (нервная, иммунная), которые частично или полностью отсутствуют в более примитивных особях. Для микроорганизмов дозы, вызывающие 50% смертности, составляют тысячи Гр, для птиц - десятки, а для высокоорганизованных млекопитающих - единицы.

3. Мутации

Каждая клетка организма содержит молекулу ДНК, которая несет информацию для правильного воспроизведения новых клеток.

ДНК - это дезоксирибонуклеиновая кислота, состоящая из длинных, закругленных молекул в виде двойной спирали. Функция ее заключается в обеспечении синтеза большинства белковых молекул, из которых состоят аминокислоты. Цепочка молекулы ДНК состоит из отдельных участков, которые кодируются специальными белками, образуя так называемый ген человека.

Радиация может либо убить клетку, либо исказить информацию в ДНК так, что со временем появятся дефектные клетки. Изменение генетического кода клетки называют мутацией. Если мутация происходит в яйцеклетке спермы, последствия могут быть ощутимы и в далеком будущем, т.к. при оплодотворении образуются 23 пары хромосом, каждая из которых состоит из сложного вещества, называемого дезоксирибонуклеиновой кислотой. Поэтому мутация, возникающая в половой клетке, называется генетической мутацией и может передаваться последующим поколениям.

По мнению Э.Дж. Холла, такие нарушения можно отнести к двум основным типам: хромосомные аберрации, включающие изменение числа или структуры хромосом, и мутации в самих генах. Генные мутации подразделяются далее на доминантные (которые проявляются сразу в первом поколении) и рецессивные (которые могут проявиться в том случае, если у обоих родителей мутантным является один и тот же ген). Такие мутации могут не проявиться на протяжении многих поколений или не обнаружиться вообще. Мутация в самотической клетке будет оказывать влияние только на сам индивид. Вызванные радиацией мутации не отличаются от естественных, однако при этом увеличивается сфера вредного воздействия.

Описанные рассуждения основаны лишь на лабораторных исследованиях животных. Прямых доказательств радиационных мутаций у человека пока нет, т.к. полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений.

Однако, как подчеркивает Джон Гофман, недооценка роли хромосомных нарушений, основанная на утверждении «их значение нам неизвестно», является классическим примером решений, принимаемых невежеством. Допустимые дозы облучения были установлены еще задолго до появления методов, позволяющих установить те печальные последствия, к которым они могут привести ничего не подозревающих людей и их потомков.

4. Действие больших доз ионизирующих излучений на биологические объекты

Живой организм очень чувствителен к действию ионизирующей радиации. Чем выше на эволюционной лестнице стоит живой организм, тем он более радиочувствителен. Радиочувствительность - многосторонняя характеристика. «Выживаемость» клетки после облучения зависит одновременно от ряда причин: от объема генетического материала, активности энергообеспечивающих систем, соотношения ферментов, интенсивности образования свободных радикалов Н и ОН.

При облучении сложных биологических организмов следует учитывать процессы, происходящие на уровне взаимосвязи органов и тканей. Радиочувствительность у различных организмов варьируется довольно широко.

Организм человека, как совершенная природная система, еще более чувствителен к радиации. Если человек перенес общее облучение дозой 100-200 рад, то у него спустя несколько дней появятся признаки лучевой болезни в легкой форме. Ее признаком может служить уменьшение числа белых кровяных клеток, которое устанавливается при анализе крови. Субъективным показателем для человека является возможная рвота в первые сутки после облучения.

Средняя степень тяжести лучевой болезни наблюдается у лиц, подвергшихся воздействию излучения в 250-400 рад. У них резко снижается содержание лейкоцитов (белых кровяных клеток) в крови, наблюдается тошнота и рвота, появляются подкожные кровоизлияния. Летальный исход наблюдается у 20% облученных спустя 2-6 недель после облучения.

При облучении дозой 400-600 рад развивается тяжелая форма лучевой болезни. Появляются многочисленные подкожные кровотечения, количество лейкоцитов в крови значительно уменьшается. Летальный исход болезни 50%.

Очень тяжелая форма лучевой болезни возникает при облучении дозой выше 600 рад. Лейкоциты в крови полностью исчезают. Смерть наступает в 100% случаев.

Описанные выше последствия радиационного облучения характерны для случаев, когда медпомощь отсутствует.

Для лечения облученного организма современная медицина широко применяет такие методы, как кровезамещение, пересадка костного мозга, введение антибиотиков, а также другие методы интенсивной терапии. При таком лечении возможно исключить смертельный исход даже при облучении дозой до 1000 рад. Энергия, излучаемая радиоактивными веществами, поглощается окружающей средой, в том числе и биологическими объектами. В результате воздействия ионизирующего излучения на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы.

Ионизирующее воздействие нарушает в первую очередь нормальное течение биохимических процессов и обмен веществ. В зависимости от величины поглощенной дозы излучения и индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма. Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные вещества попадают внутрь организма, например, с пищей или ингаляционным путем). Рассмотрим действие ионизирующего излучения, когда источник облучения находится вне организма.

Биологических эффект ионизирующего излучения в данном случае зависит от суммарной дозы и времени воздействия излучения, его вида, размеров облучаемой поверхности и индивидуальных особенностей организма. При однократном облучении всего тела человека возможны биологические нарушения в зависимости от суммарной поглощенной дозы излучения.

При облучении дозами, в 100-1000 раз превышающими смертельную дозу, человек может погибнуть во время облучения. Причем, поглощенная доза излучения, вызывающая поражение отдельных частей тела, превышает смертельную поглощенную дозу облучения всего тела. Смертельные поглощенные дозы для отдельных частей тела следующие: голова - 20 Гр, нижняя часть живота - 30 Гр, верхняя часть живота - 50 Гр, грудная клетка - 100 Гр, конечности - 200 Гр.

Степень чувствительности различных тканей к облучению неодинакова. Если рассматривать ткани органов в порядке уменьшения их чувствительности к действию облучения, то получим следующую последовательность: лимфатическая ткань, лимфатические узлы, селезенка, зобная железа, костный мозг, зародышевые клетки. Большая чувствительность кроветворных органов к радиации лежит в основе определения характера лучевой болезни.

При однократном облучении всего тела человека поглощенной дозой 0,5 Гр через сутки после облучения может резко сократиться число лимфоцитов. Уменьшается также и количество эритроцитов (красных кровяных телец) по истечении двух недель после облучения. У здорового человека насчитывается порядка 10 4 красных кровяных телец, причем ежедневно воспроизводится 10 4 больных лучевой болезнью такое соотношение нарушается и в результате организм погибает.

Важным фактором при воздействии ионизирующего излучения на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает. Чем более дробно излучение по времени, тем меньше его поражающее действие (рис. 2.17).

Внешнее облучение альфа-, а также бета-частицами менее опасно. Они имеют небольшой пробег в ткани и не достигают кроветворных и других внутренних органов. При внешнем облучении необходимо учитывать гамма- и нейтронное облучение, которые проникают в ткань на большую глубину и разрушают ее, о чем более подробно рассказывалось выше.

5. Два вида облучения организма: внешнее и внутреннее

Ионизирующее излучение может двумя способами оказывать воздействие на человека. Первый способ - внешнее облучение от источника, расположенного вне организма, которое в основном зависит от радиационного фона местности на которой проживает человек или от других внешних факторов. Второй - внутреннее облучение, обусловленное поступлением внутрь организма радиоактивного вещества, главным образом с продуктами питания.

Продукты питания, не соответствующие радиационным нормам, имеют повышенное содержание радионуклидов, инкорпорируются с пищей и становятся источником излучения непосредственно внутри организма.

Большую опасность представляют продукты питания и воздух, содержащие изотопы плутония и америция, которые обладают высокой альфа активностью. Плутоний, выпавший в результате Чернобыльской катастрофы, является самым опасным канцерогенным веществом. Альфа излучение имеет высокую степень ионизации и, следовательно, большую поражающую способность для биологических тканей.

Попадание плутония, а также америция через дыхательные пути в организм человека вызывает онкологию легочных заболеваний. Однако следует учесть, что отношение общего количества плутония и его эквивалентов америция, кюрия к общему количеству плутония, попавшего в организм ингаляционным путем незначительно. Как установил Беннетт, при анализе ядерных испытаний в атмосфере, на территории США соотношение выпадения и ингаляции равно 2,4 млн. к 1, то есть подавляющее большинство альфа-содержащих радионуклидов от испытаний ядерного оружия ушли в землю не оказав влияния на человека. В выбросах Чернобыльского следа наблюдались также частицы ядерного топлива, так называемые горячие частицы размером около 0,1 микрона. Эти частицы также могут проникать ингаляционным путем в легкие и представлять серьезную опасность.

Внешнее и внутреннее облучения требуют различные меры предосторожности, которые должны быть приняты против опасного действия радиации.

Внешнее облучение в основном создается гамма содержащими радионуклидами, а также рентгеновским излучением. Его поражающая способность зависит от:

а) энергии излучения;

б) продолжительности действия излучения;

в) расстояния от источника излучения до объекта;

г) защитных мероприятий.

Между продолжительностью времени облучения и поглощенной дозой существует линейная зависимость, а влияние расстояния на результат радиационного воздействия имеет квадратичную зависимость.

Для защитных мероприятий от внешнего облучения используются в основном свинцовые и бетонные защитные экраны на пути излучения. Эффективность применения материала в качестве экрана для защиты от проникновения рентгеновских или гамма-лучей зависит от плотности материала, а также от концентрации содержащихся в нем электронов.

Если от внешнего облучения можно защититься специальными экранами или другими действиями, то с внутренним облучением это сделать не представляется возможным.

Различают три возможных пути, по которым радионуклиды способны попасть внутрь организма:

а) с пищей;

б) через дыхательные пути с воздухом;

в) через повреждения на коже.

Следует отметить, что радиоактивные элементы плутоний и америций проникают в организм в основном с пищей или при дыхании и очень редко через повреждения кожи.

Как отмечает Дж. Холл, органы человека реагируют на поступившие в организм вещества исходя исключительно из химической природы последних, вне зависимости от того, являются они радиоактивными или нет. Химические элементы такие как натрий и калий, входят в состав всех клеток организма. Следовательно, их радиоактивная форма, введенная в организм, будет также распределена по всему организму. Другие химические элементы имеют склонность накапливаться в отдельных органах, как это происходит с радиоактивным йодом в щитовидной железе или кальцием в костной ткани.

Проникновение радиоактивных веществ с пищей внутрь организма существенно зависит от их химического взаимодействия. Установлено, что хлорированная вода увеличивает растворимость плутония, и как следствие инкорпорацию его во внутренние органы.

После того, как радиоактивное вещество попало в организм, следует учитывать величину энергии и вид излучения, физический и биологический период полураспада радионуклида. Биологическим периодом полувыведения называют время, которое необходимо для выведения из организма половины радиоактивного вещества. Некоторые радионуклиды выводятся из организма быстро, и поэтому не успевают нанести большого вреда, в то время как другие сохраняются в организме в течение значительного времени.

Период полувыведения радионуклидов, существенно зависит от физического состояния человека, его возраста и других факторов. Сочетание физического периода полураспада с биологическим, называется эффективным периодом полураспада -наиболее важным в определении суммарной величины излучения. Орган, наиболее подверженный действию радиоактивного вещества называют критическим. Для различных критических органов разработаны нормативы, определяющие допустимое содержание каждого радиоактивного элемента. На основании этих данных созданы документы, регламентирующие допустимые концентрации радиоактивных веществ в атмосферном воздухе, питьевой воде, продуктах питания. В Беларуси в связи с аварией на ЧАЭС действуют Республиканские допустимые уровни содержания радионуклидов цезия и стронция в пищевых продуктах и питьевой воде (РДУ-92). В Гомельской области введены по некоторым пищевым продуктам питания, например детского, более жесткие нормативы. С учетом всех вышеперечисленных факторов и нормативов, подчеркнем, что среднегодовая эффективная эквивалентная доза облучения человека не должна превышать 1 мЗв в год.

Литература

1. Савенко В.С. Радиоэкология. - Мн.: Дизайн ПРО, 1997.

2. М.М. Ткаченко, «Радіологія (променева діагностика та променева терапія)»

3. А.В. Шумаков Краткое пособие по радиационной медицине Луганск -2006

4. Бекман И.Н. Лекции по ядерной медицине

5. Л.Д. Линденбратен, Л.Б. Наумов. Медицинская рентгенология. М. Медицина 1984

6. П.Д. Хазов, М.Ю. Петрова. Основы медицинской радиологии. Рязань, 2005

7. П.Д. Хазов. Лучевая диагностика. Цикл лекций. Рязань. 2006

облучение организм ионизирующий

Размещено на сайт

Подобные документы

    Прямое и косвенное действие ионизирующего излучения. Воздействие ионизирующего излучения на отдельные органы и организм в целом, мутации. Действие больших доз ионизирующих излучений на биологические объекты. Виды облучения организма: внешнее и внутреннее.

    реферат , добавлен 06.02.2010

    Применение ионизирующего излучения в медицине. Технология лечебных процедур. Установки для дистанционной лучевой терапии. Применение изотопов в медицине. Средства защиты от ионизирующего излучения. Процесс получения и использования радионуклидов.

    презентация , добавлен 21.02.2016

    Основные функциональные и морфологические изменения в клеточных структурах, происходящие под воздействием ионизирующего излучения, степень данных изменений на иммунную систему организма. Клинические признаки облучения и протекание лучевой болезни.

    реферат , добавлен 23.01.2010

    Физические основы лучевой терапии. Основные виды и свойства ионизирующих излучений. Корпускулярные и фотонные ионизирующие излучения (ИИ). Биологические основы лучевой терапии. Изменения химической структуры атомов и молекул, биологическое действие ИИ.

    реферат , добавлен 15.01.2011

    Механизм действия на организм ионизирующей радиации. Теория липидных радиотоксинов (первичных радиотоксинов и цепных реакций). Опосредованное действие радиации. Особенности патогенетического действия на организм различных видов лучистой энергии.

    презентация , добавлен 28.09.2014

    История открытия радиоактивности. Виды ионизирующего излучения. Последствия облучения для здоровья. Радиоактивные лечебные препараты. Аспекты применения радиации для диагностики, лечения, стерилизации медицинских инструментов, исследования кровообращения.

    презентация , добавлен 30.10.2014

    Общее понятие о квантовой электронике. История развития и принцип устройства лазера, свойства лазерного излучения. Низкоинтенсивные и высокоинтенсивные лазеры: свойства, действие на биологические ткани. Применение лазерных технологий в медицине.

    реферат , добавлен 28.05.2015

    Биологическое действие на организм ионизирующих излучений радиоактивного агента и нейтронного поражения. Острая и хроническая лучевая болезнь: периодичность течения, клинические синдромы. Костномозговая форма ОЛБ; диагностика, патогенез, профилактика.

    презентация , добавлен 21.02.2016

    Внезапное увеличение смертности под действием излучения. Гипотезы происхождения излучения и его идентификации. Источники биологически активных излучений земного происхождения, химические объекты и их влияние на видоизменение клеток живых организмов.

    доклад , добавлен 16.12.2009

    Иммунорегулирующее действие глюкокортикоидов, воздействие на организм. Влияние на обмен веществ, взаимоотношения с другими гормонами. Названия препаратов. Мощное противоаллергическое действие, противовоспалительный, антистрессовый, противошоковый эффект.

наши тела вместе с воздухом.

естественной радиации.

облучения.

проводилось.

По материалам staynatural.ru

Радиация вокруг нас. Она естественна для окружающей среды нашей

планеты - радиация существовала на Земле с самого её зарождения.

Следовательно, жизнь развивалась в условиях постоянной ионизирующей

радиации на планете. Излучение приходит из космоса, от земли, а также

вырабатывается внутри наших тел. Радиация присутствует в воздухе,

которым мы дышим, в еде и воде, а также в строительных материалах,

которые мы используем для наших домов. Некоторые продукты содержат

больше радиации, чем другие (например, бананы и бразильские орехи). В

домах из камня и кирпича уровень радиации больше, чем в строениях из

дерева и тростника. Гранит обладает наиболее высоким уровнем радиации

среди строительных материалов.

Уровень естественной радиации на планете варьируется от региона к

региону. Он зависит от типа местности (горные регионы получают больше

радиации из космоса), а также от типа почвы (в местах зарождения урана

уровень радиации намного больше). Большая часть излучения для людей

происходит от радона - газа, образуемого в коре Земли, который попадает в

наши тела вместе с воздухом.

Среднестатистический житель планеты получает половину облучения из

природных источников. За вторую половину обычно ответственны медицинские

обследования (рентген и др.). Из естественных источников мы обычно

получаем около 310 мили Р. Обычно, две трети этой радиации излучают газы

радон и торон. Оставшаяся треть приходит из космоса, от земли и от

наших собственных тел. При этом, до настоящего момента ученые не

обнаружили никакого потенциального негативного влияния естественной

радиации на человека и его здоровье.

Человек получает также небольшую дозу искусственно созданного

излучения (от рентгенов, техники, антенн и т.д.), которая обычно не

превышает 310милиР. Компьютерная томография, например, дарит нам дозу

около 150 милиР. Процедуры вроде рентгена и флюорографии дают еще

где-то 150 милиР. Вдобавок, определенным уровнем излучения обладают

некоторые продукты: табак, удобрения, сварочные аппараты, указатели

«Выход», светящиеся в темноте предметы, дымовые детекторы. Именно

поэтому довольно сложно определить точный уровень облучения в год для

отдельного человека: это зависит от личных привычек, работы, места

жительства и т.д. Хотя существуют различия между естественной и

искусственно созданной радиацией, оба типа одинаково влияют на человека.

Биологические влияние радиации на человека

Мы определяет биологическое влияние радиации её воздействием на живую

клетку. В случае несильного облучения, биологическое влияние столь

мало, что часто его просто невозможно определить. У человеческого тела

есть определенные защитные механизмы, как против радиации, так и против

химических канцерогенов. Следовательно, биологическое влияние радиации

на живую клетку можно свести к трем вариантам: (1) поврежденная клетка

восстанавливается сама, останавливая негативные последствия. (2) клетка

умирает, как умирают миллионы клеток каждый день, и её замещает новая в

ходе естественных биологических процессов. (3) клетка восстанавливается

неправильно, что приводит к биофизической вариации.

Связь между радиацией и развитием рака наблюдалась, в основном, при

высоком уровне облучения (например, при разрыве атомной бомбы в Японии,

или при прохождении определенной терапии, предусматривающей сильное

облучение). Рак, связанный с высоким облучением (больше 50,000 милиР),

включает лейкемию, рак груди, мочевого пузыря, толстой кишки, печени,

легких, пищевода, яичек и желудка. Научная литература также предполагает

связь между ионизирующей радиацией и раком предстательной железы,

полости носа, глотки и гортани, а также поджелудочной железы. Период

между облучением и непосредственным развитием рака называется латентным и

может продолжаться несколько лет. Рак, возникающий от облучения, нельзя

отличить от заболевания, возникшего по другим причинам. Именно поэтому,

Национальный институт раковых заболеваний США указывает на то, что и

другие привычки и факторы (курение, потребление алкогольных напитков и

диета) существенно влияю на развитие тех же самых заболеваний.

Хотя сильное облучение связано с раком, на данный момент еще нет

доказательств того, что низкие дозы радиации (менее 10,000 милиР)

способны вызвать развитие раковых заболеваний. Люди, проживающие в

регионах с высоким уровнем естественной радиации, не более подвержены

этим заболеваниям, чем жители регионов с более низким уровнем

естественной радиации.

Тем не менее, органы по защите от радиации продолжают действовать на

основе предположения, что любое количество радиации способно привести к

раковым заболеваниям, при этом, чем выше доза облучения, тем вероятнее

развитие рака. Данная гипотеза сейчас воспринимается с сомнением и

считается несколько преувеличенной.

Сильное облучение имеет тенденцию убивать клетки, в то время как

низкое - повреждать их и изменять генетический год (ДНК) облученной

клетки. Сильное облучение способно убить так много клеток, что это

приводит к немедленному поражению тканей и органов. В этом случае, тело

реагирует на аварийную ситуацию - эта реакция называется острым

синдромом облучения. Чем выше доза радиации, тем быстрее проявляется

воздействие, и тем вероятнее летальный исход. Этот синдром наблюдался у

многих выживших после разрыва ядерной бомбы в 1945, а также у работников

атомной станции Чернобыль в 1986 году. Около 134 работников станции и

пожарных, которые старались потушить пламя, подверглись мощнейшему

излучению (80,000 -1,600,000 милиР). 28 из них умерли в течении 3-х

месяцев после аварии. Двое умерли в течении 2-х дней от ожогов и

облучения.

Радиация по-разному влияет на людей. Именно поэтому, смертельную дозу

облучения установить весьма трудно. Тем не менее, считается, что

половина населения Земли умерла бы в течении 30 дней после облучения в

350,000 - 500,000 милиР, продолжающегося от нескольких минут до

нескольких часов. Летальный исход и его срок в данном случае зависит от

состояния здоровья человека до облучения и качества медицинского

обслуживания, полученного после. Тем не менее, летальный исход возможен

только при облучении всего тела. При облучении отдельных его частей,

результаты будут менее драматичными - например, ожоги кожи.

Низкие дозы радиации (менее 10,000 милиР), продолжающиеся на

протяжении длительного периода времени не вызывают немедленного

поражения отдельных органов. Воздействие несильного, но длительного

облучения проявляется на клеточном уровне. Поэтому изменения в теле

человека могут проходить скрыто на протяжении десятков лет (от 5 до 20

Изменения на генетическом уровне и развитие рака - это основные

риски, связанные с радиоактивным облучением. Вероятность развития рака

после облучения в 5 раз превышает вероятность генетической мутации. К

генетическим эффектам относится изменение репродуктивных клеток, которое

передается к детям. Подобная мутация может проявиться у первого

поколения потомков, или через несколько поколений, в зависимости от

того, являются ли мутировавшие гены доминантными или рецессивными.

Хотя передача мутировавших ген была доказана в лабораторных условиях

на животных, у потомков людей, переживших разрыв ядерной бомбы в

Хиросиме и Нагасаки, ничего подобного не наблюдалось.

Американские исследования не зафиксировали какой-либо генетической

мутации у людей, живущих рядом с атомными электростанциями. Тем не

менее, необходимо отметить, что исследований о более высокой

предрасположенности к развитию рака у жителей этих регионов пока еще не

проводилось.

По материалам staynatural.ru

Радиоактивность это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто французским ученым Анри Беккерелем в 1896 году для солей урана.

В 1899 году под руководством английского ученого Эрнста Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

ТРИ составляющие радиационного излучения Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м. Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц 20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см. Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц

Каждый тип излучения обладает своей проникающей способностью, то есть свободностью пройти сквозь вещество. Чем большей плотностью обладает вещество, тем хуже оно пропускает излучение.

Альфа излучение — обладает низкой проникающей способностью; — задерживается листом бумаги, одеждой, кожей человека; — попавшие альфа частицы внутрь организма, представляют большую опасность.

-излучение По своим свойствам -частицы обладают малой проникающей способностью и не представляют опасности до тех пор, пока радиоактивные вещества, испускающие -частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.

Бета излучение — имеет гораздо большую проникающую способность; — может проходить в воздухе расстояние до 5 метров, способно проникать в ткани организма; — слой алюминия толщиной в несколько миллиметров способно задержать бета-частицы.

-излучение — частицы могут проникать в ткани организма на глубину один – два сантиметра.

Гамма излучение — обладает ещё большой проникающей способностью; — задерживается толстым слоем свинца или бетона.

-излучение Большой проникающей способностью обладает -излучение, которое распространяется со скоростью света; его может задержать лишь толстая свинцовая или бетонная плита.

Основные понятия, термины и определения Радиация — это явление, происходящее в радиоактивных элементах, ядерных реакторах, при ядерных взрывах, сопровождающееся испусканием частиц и различными излучениями, в результате чего возникают вредные и опасные факторы, воздействующие на людей. Проникающая радиация следует понимать как поражающий фактор ионизирующих излучений, возникающих, например, при взрыве атомного реактора. Ионизирующее излучение — это любое излучение, вызывающее ионизацию среды, т. е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.

Источники внешнего облучения 1. Космические лучи (0, 3 м. Зв/год), дают чуть меньше половины всего внешнего облучения получаемого населением. 2. Нахождение человека, чем выше поднимается он над уровнем моря, тем сильнее становится облучение. 3. Земная радиация, исходит в основном от тех пород полезных ископаемых, которые содержат калий – 40, рубидий – 87, уран – 238, торий – 232.

Внутреннее облучение населения Попадание в организм с пищей, водой, воздухом. Радиоактивный газ радон — он невидимый, не имеющий ни вкуса, ни запаха газ, который в 7, 5 раз тяжелее воздуха. Глиноземы. Отходы промышленности, используемые в строительстве, например, кирпич из красной глины, доменный шлак, зольная При сжигании угля значительная часть его компонентов спекается в шлак, где концентрируются радиоактивные вещества.

При работе с любым источником радиации необходимо принимать меры по радиационной защиты всех людей, могущих попасть в зону действия излучения. Человек с помощью органов чувств не способен обнаружить любые дозы радиоактивного излучения. Для обнаружения ионизирующих излучений, измерения их энергии и других свойств, применяются до зиметры. Измерение радиоактивного излучения

Эквивалентная доза 1 Зв. = 1 Дж/кг Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения.

Эквивалентная доза излучения: Н=Д*К К — коэффициент качества Д – поглощенная доза излучений Поглощенная доза излучений: Д=Е/ m Е – энергия поглощенного тела m – масса тела

Доза излучения поглощение Е ионизирующего излучения к массе вещества В СИ поглощённую дозу излучения выражают в грэях Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2*10 -3 Гр Доза излучения 3 -10 Гр, полученная за короткое время, смертельна

Воздействие ионизирующих излучений Любой вид ионизирующих излучений вызывает биологические изменения в организме. Однократное облучение вызывает биологические нарушения, которые зависят от суммарной поглощенной дозы. Так при дозе до 0, 25 Гр. видимых нарушений нет, но уже при 4 – 5 Гр. смертельные случаи составляют 50% от общего числа пострадавших, а при 6 Гр. и более — 100% пострадавших. Основной механизм действия связан с процессами ионизации атомов и молекул живой материи, в частности молекул воды, содержащихся в клетках. Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия и вида излучения и радионуклида, попавшего внутрь организма.

Механизм действия излучения: происходит ионизация атомов и молекул, что приводит к изменению химической активности клеток. Биологическое действие радиоактивных излучений

В силу того, что при радиоактивном облучении биологическая поражаемость органов тела человека или отдельных систем организма неодинакова, их делят на группы: I (наиболее уязвимая) - все тело, гонады и красный костный мозг (кроветворная система); II - хрусталик глаза, щитовидная железа (эндокринная система), печень, почки, легкие, мышцы, жировая ткань, селезенка, желудочно-кишечный тракт, а также другие органы, которые не вошли в I и III группы; III - кожный покров, костная ткань, кисти, предплечья, стопы и голени.

Чувствительность отдельных органов к радиоактивному излучению Ткани Эквивалентная доза % Костная ткань 0, 03 Щитовидная железа 0, 03 Красный костный мозг 0, 12 Легкие 0, 12 Молочная железа 0, 15 Яичники, семенники 0, 25 Другие ткани 0, 3 Организм в целом

Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в ионизации атомов и молекул среды. Биологическое действие радиоактивных излучений

Живая клеткасложный механизм, не способный продолжать нормальную деятельность даже при малых повреждениях отдельных его участков. Даже слабые излучения могут нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь). При большой интенсивности излучения живые организмы погибают. Опасность излучения заключается в том, что они не вызывают никаких болевых ощущений даже при смертельных дозах. Биологическое действие радиоактивных излучений

Биологическое действие радиоактивных излучений Изменения клетки: — Разрушение хромосом — Нарушение способности к делению — Изменение проницаемости клеточных мембран — Разбухание ядер клето к

Облучение может оказывать и определённую пользу Быстроразмножающиеся клетки в раковых опухолях более чувствительны к облучению. На этом основано подавление раковой опухали γ -лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи

Наиболее чувствительные к излучению ядра клеток: 1. Клетки костного мозга (нарушается процесс образования крови) 2. Поражение клеток пищеварительного тракта и др. органы. Биологическое действие радиоактивных излучений

Генетические последствия радиации — проявляются в виде генных мутаций, а также изменения числа или структуры хромосом. Доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных перестроек (аберраций) на каждый миллион живых новорожденных.

Радиоактивные отходы РАО Отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности. Это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается.

Классификация радиоактивных отходов По агрегатному состоянию: Жидкие Твёрдые Газообразные По составу излучения: α – излучение β — излучение γ — излучение нейтронное излучение По времени жизни: короткоживущие (менее 1 года) среднеживущие (от года до 100 лет) долгоживущие (более 100 лет) По активности: Низкоактивные Среднеактивные Высокоактивные

Авария на Чернобыльской АЭС показала огромную опасность радиоактивных излучений. Все люди должны иметь представление об этой опасности и мерах защиты от неё. 26 апреля 1986 г.

Методы и средства защиты от ионизирующих излучений увеличение расстояния между оператором и источником; сокращение продолжительности работы в поле излучения; экранирование источника излучения; дистанционное управление; использование манипуляторов и роботов; полная автоматизация технологического процесса; использование средств индивидуальной защиты и предупреждение знаком радиационной опасности; постоянный контроль за уровнем излучения и за дозами облучения персонала.

Самый простой метод защиты – это удаление персонала от источника излучения на достаточно большое расстояние. Поэтому все объёмы с радиоактивными препаратами не следует брать руками. Нужно пользоваться специальными щипцами с длинной ручкой. Если удаление от источника излучения на достаточно большое расстояние не возможно. Используют для защиты от излучения преграды из поглощающих материалов.

Реферат

Тема: БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИАЦИИ

План:

Введение

1 Прямое и косвенное действие ионизирующего излучения

2 Воздействие ионизирующего излучения на отдельные органы и организм в целом

3 Мутации

4 Действие больших доз ионизирующих излучений на биологические объекты

5. Два вида облучения организма: внешнее и внутреннее

Заключение

Литература

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИАЦИИ

Фактор радиации присутствовал на нашей планете с момента ее образования, и как показали дальнейшие исследования, ионизирующие излучения наряду с другими явлениями физической, химической и биологической природы сопровождали развитие жизни на Земле. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы - в середине XX. Ионизационные излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением.

Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде.

При изучении действия радиации на живой организм были определены следующие особенности:

· Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Существует так называемый период мнимого благополучия - инкубационный период проявления действия ионизирующего излучения. Продолжительность его сокращается при облучении в больших дозах.

· Действие от малых доз может суммироваться или накапливаться.

· Излучение действует не только на данный живой организм, но и на его потомство - это так называемый генетический эффект.

· Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови.

· Не каждый организм в целом одинаково воспринимает облучение.

1. ПРЯМОЕ И КОСВЕННОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Радиоволны, световые волны, тепловая энергия солнца - все это разновидности излучений. Однако, излучение будет ионизирующим, если оно способно разрывать химические связи молекул, из которых состоят ткани живого организма, и, как следствие, вызывать биологические изменения. Действие ионизирующего излучения происходит на атомном или молекулярном уровне, независимо от того, подвергаемся ли мы внешнему облучению, или получаем радиоактивные вещества с пищей и водой, что нарушает баланс биологических процессов в организме и приводит к неблагоприятным последствиям. Биологические эффекты влияния" радиации на организм человека обусловлены взаимодействием энергии излучения с биологической тканью. Энергию непосредственно передаваемую атомам и молекулам биотканей называют прямым действием радиации. Некоторые клетки из-за неравномерности распределения энергии излучения будут значительно повреждены.

Одним из прямых эффектов является канцерогенез или развитие онкологических заболеваний. Раковая опухоль возникает, когда соматическая клетка выходит из под контроля организма и начинает активно делиться. Первопричиной этого являются нарушения в генетическом механизме, называемые мутациями. При делении раковая клетка производит только раковые клетки. Одним из наиболее чувствительных органов к воздействию радиации является щитовидная железа. Поэтому биоткань этого органа наиболее уязвима в плане развития рака. Не менее восприимчива к влиянию излучения кровь. Лейкоз или рак крови - один из распространенных эффектов прямого воздействия радиации. Заряженные частицы проникают в ткани организма, теряют свою энергию вследствие электрических взаимодействий с электронами атомов Электрическое взаимодействие сопровождает процесс ионизации (вырывание электрона из нейтрального атома)

Физико-химические изменения сопровождают возникновение в организме чрезвычайно опасных "свободных радикалов".

Кроме прямого ионизирующего облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды. При радиолизе возникают свободные радикалы - определенные атомы или группы атомов, обладающие высокой химической активностью. Основным признаком свободных радикалов являются избыточные или неспаренные электроны. Такие электроны легко смещаются со своих орбит и могут активно участвовать в химической реакции. Важно то, что весьма незначительные внешние изменения могут привести к значительным изменениям биохимических свойств клеток. К примеру, если обычная молекула кислорода захватит свободный электрон, то она превращается в высокоактивный свободный радикал - супероксид. Кроме того, имеются и такие активные соединения, как перекись водорода, гидрооксил и атомарный кислород. Большая часть свободных радикалов нейтральна, но некоторые из них могут иметь положительный или отрицательный заряд.

Если число свободных радикалов мало, то организм имеет возможность их контролировать. Если же их становится слишком много, то нарушается работа защитных систем, жизнедеятельность отдельных функций организма. Повреждения, вызванные свободными радикалами, быстро увеличиваются по принципу цепной реакции. Попадая в клетки, они нарушают баланс кальция и кодирование генетической информации. Такие явления могут привести к сбоям в синтезе белков, что является жизненно важной функцией всего организма, т.к. неполноценные белки нарушают работу иммунной системы. Основные фильтры иммунной системы - лимфатические узлы работают в перенапряженном режиме и не успевают их отделять. Таким образом, ослабляются защитные барьеры и в организме создаются благоприятные условия для размножения вирусов микробов и раковых клеток.

Свободные радикалы, вызывающие химические реакции, вовлекают в этот процесс многие молекулы, не затронутые излучением. Поэтому производимый излучением эффект обусловлен не только количеством поглощенной энергии, а и той формой, в которой эта энергия передается. Никакой другой вид энергии, поглощенный биообъектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение. Однако природа этого явления такова, что все процессы, в том числе и биологические, уравновешиваются. Химические изменения возникают в результате взаимодействия свободных радикалов друг с другом или со "здоровыми" молекулами Биохимические изменения происходят как в момент облучения, так и на протяжении многих лет, что приводит к гибели клеток.

Наш организм в противовес описанным выше процессам вырабатывает особые вещества, которые являются своего рода "чистильщиками".

Эти вещества (ферменты) в организме способны захватывать свободные электроны, не превращаясь при этом в свободные радикалы. В нормальном состоянии в организме поддерживается баланс между появлением свободных радикалов и ферментами. Ионизирующее излучение нарушает это равновесие, стимулирует процессы роста свободных радикалов и приводит к негативным последствиям. Активизировать процессы поглощения свободных радикалов можно, включив в рацион питания антиокислители, витамины А, Е, С или препараты, содержащие селен. Эти вещества обезвреживают свободные радикалы, поглощая их в больших количествах.

2. ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОТДЕЛЬНЫЕ ОРГАНЫ И ОРГАНИЗМ В ЦЕЛОМ

В структуре организма можно выделить два класса систем: управляющую (нервная, эндокринная, иммунная) и жизнеобеспечивающую (дыхательная, сердечно-сосудистая, пищеварительная). Все основные обменные (метаболические) процессы и каталитические (ферментативные) реакции происходят на клеточном и молекулярном уровнях. Уровни организации организма функционируют в тесном взаимодействии и взаимовлиянии со стороны управляющих систем. Большинство естественных факторов воздействуют сначала на вышестоящие уровни, затем через определенные органы и ткани - на клеточно-молекулярные уровни. После этого начинается ответная фаза, сопровождающаяся коррективами на всех уровнях.

Взаимодействие радиации с организмом начинается с молекулярного уровня. Прямое воздействие ионизирующего излучения, поэтому является более специфичным. Повышение уровня окислителей характерно и для других воздействий. Известно, что различные симптомы (температура, головная боль и др.) встречаются при многих болезнях и причины их различны. Это затрудняет установление диагноза. Поэтому, если в результате вредного воздействия на организм радиации не возникает определенной болезни, установить причину более отдаленных последствий трудно, поскольку они теряют свою специфичность.

Радиочувствительность различных тканей организма зависит от биосинтетических процессов и связанной с ними ферментативной активностью. Поэтому наиболее высокой радиопора-жаемостью отличаются клетки костного мозга, лимфатических узлов, половые клетки. Кровеносная система и красный костный мозг наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах 0,5-1 Гр. Однако, они обладают способностью восстанавливаться и если не все клетки поражены, кровеносная система может восстановить свои функции. Репродуктивные органы, например, семенники, так же отличаются повышенной радиочувствительностью. Облучение свыше 2 Гр приводит к постоянной стерильности. Только через много лет они могут полноценно функционировать. Яичники менее чувствительны, по крайней мере, у взрослых женщин. Но однократная доза более 3 Гр все же приводит к их стерильности, хотя большие дозы при неоднократном облучении не сказываются на способности к деторождению.

Очень восприимчив к излучению хрусталик глаза. Погибая, клетки хрусталика становятся непрозрачными, разрастаясь, приводят к катаракте, а затем и к полной слепоте. Это может произойти при дозах около 2 Гр.

Радиочувствительность организма зависит от его возраста. Небольшие дозы при облучении детей могут замедлить или вовсе остановить у них рост костей. Чем меньше возраст ребенка, тем сильнее подавляется рост скелета. Облучение мозга ребенка может вызвать изменения в его характере, привести к потере памяти. Кости и мозг взрослого человека способны выдержать гораздо большие дозы. Относительно большие дозы способны выдерживать большинство органов. Почки выдерживают дозу около 20 Гр, полученную в течение месяца, печень - около 40 Гр, мочевой пузырь - 50 Гр, а зрелая хрящевая ткань - до 70 Гр. Чем моложе организм, тем при прочих равных условиях, он более чувствителен к воздействию радиации.

Видовая радиочувствительность возрастает по мере усложнения организма. Это объясняется тем, что в сложных организмах больше слабых звеньев, вызывающих цепные реакции выживания. Этому способствуют и более сложные системы управления (нервная, иммунная), которые частично или полностью отсутствуют в более примитивных особях. Для микроорганизмов дозы, вызывающие 50% смертности, составляют тысячи Гр, для птиц - десятки, а для высокоорганизованных млекопитающих - единицы (рис. 2.15).

3. МУТАЦИИ

Каждая клетка организма содержит молекулу ДНК, которая несет информацию для правильного воспроизведения новых клеток.

ДНК - это дезоксирибонуклеиновая кислота, состоящая из длинных, закругленных молекул в виде двойной спирали. Функция ее заключается в обеспечении синтеза большинства белковых молекул из которых состоят аминокислоты. Цепочка молекулы ДНК состоит из отдельных участков, которые кодируются специальными белками, образуя так называемый ген человека.

Радиация может либо убить клетку, либо исказить информацию в ДНК так, что со временем появятся дефектные клетки. Изменение генетического кода клетки называют мутацией. Если мутация происходит в яйцеклетке спермы, последствия могут быть ощутимы и в далеком будущем, т.к. при оплодотворении образуются 23 пары хромосом, каждая из которых состоит из сложного вещества, называемого дезоксирибонуклииновой кислотой. Поэтому мутация, возникающая в половой клетке, называется генетической мутацией и может передаваться последующим поколениям.

Описанные рассуждения основаны лишь на лабораторных исследованиях животных. Прямых доказательств радиационных мутаций у человека пока нет, т.к. полное выявление всех наследственных дефектов происходит лишь на протяжении многих поколений.

Однако, как подчеркивает Джон Гофман, недооценка роли хромосомных нарушений, основанная на утверждении "их значение нам неизвестно", является классическим примером решений, принимаемых невежеством. Допустимые дозы облучения были установлены еще задолго до появления методов, позволяющих установить те печальные последствия, к которым они могут привести ничего не подозревающих людей и их потомков.

4. ДЕЙСТВИЕ БОЛЬШИХ ДОЗ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ

Живой организм очень чувствителен к действию ионизирующей радиации. Чем выше на эволюционной лестнице стоит живой организм, тем он более радиочувствителен. Радиочувствительность - многосторонняя характеристика. "Выживаемость" клетки после облучения зависит одновременно от ряда причин: от объема генетического материала, активности энергообеспечивающих систем, соотношения ферментов, интенсивности образования свободных радикалов Н и ОН.

При облучении сложных биологических организмов следует учитывать процессы, происходящие на уровне взаимосвязи органов и тканей. Радиочувствительность у различных организмов варьируется довольно широко (рис. 2.16).

Организм человека, как совершенная природная система, еще более чувствителен к радиации. Если человек перенес общее облучение дозой 100-200 рад, то у него спустя несколько дней появятся признаки лучевой болезни в легкой форме. Ее признаком может служить уменьшение числа белых кровяных клеток, которое устанавливается при анализе крови. Субъективным показателем для человека является возможная рвота в первые сутки после облучения.

Средняя степень тяжести лучевой болезни наблюдается у лиц, подвергшихся воздействию излучения в 250-400 рад. У них резко снижается содержание лейкоцитов (белых кровяных клеток) в крови, наблюдается тошнота и рвота, появляются подкожные кровоизлияния. Летальный исход наблюдается у 20% облученных спустя 2-6 недель после облучения.

При облучении дозой 400-600 рад развивается тяжелая форма лучевой болезни. Появляются многочисленные подкожные кровотечения, количество лейкоцитов в крови значительно уменьшается. Летальный исход болезни 50% .

Очень тяжелая форма лучевой болезни возникает при облучении дозой выше 600 рад. Лейкоциты в крови полностью исчезают. Смерть наступает в 100% случаев.

Описанные выше последствия радиационного облучения характерны для случаев, когда медпомощь отсутствует.

Для лечения облученного организма современная медицина широко применяет такие методы, как кровезамещение, пересадка костного мозга, введение антибиотиков, а также другие методы интенсивной терапии. При таком лечении возможно исключить смертельный исход даже при облучении дозой до 1000 рад. Энергия, излучаемая радиоактивными веществами, поглощается окружающей средой, в том числе и биологическими объектами. В результате воздействия ионизирующего излучения на организм человека в тканях могут происходить сложные физические, химические и биохимические процессы.

Ионизирующее воздействие нарушает в первую очередь нормальное течение биохимических процессов и обмен веществ. В зависимости от величины поглощенной дозы излучения и индивидуальных особенностей организма вызванные изменения могут быть обратимыми или необратимыми. При небольших дозах пораженная ткань восстанавливает свою функциональную деятельность. Большие дозы при длительном воздействии могут вызвать необратимое поражение отдельных органов или всего организма. Любой вид ионизирующих излучений вызывает биологические изменения в организме как при внешнем (источник находится вне организма), так и при внутреннем облучении (радиоактивные вещества попадают внутрь организма, например, с пищей или ингаляционным путем). Рассмотрим действие ионизирующего излучения, когда источник облучения находится вне организма.

Биологических эффект ионизирующего излучения в данном случае зависит от суммарной дозы и времени воздействия излучения, его вида, размеров облучаемой поверхности и индивидуальных особенностей организма. При однократном облучении всего тела человека возможны биологические нарушения в зависимости от суммарной поглощенной дозы излучения.

При облучении дозами, в 100-1000 раз превышающими смертельную дозу, человек может погибнуть во время облучения. Причем, поглощенная доза излучения, вызывающая поражение отдельных частей тела, превышает смертельную поглощенную дозу облучения всего тела. Смертельные поглощенные дозы для отдельных частей тела следующие: голова - 20 Гр, нижняя часть живота - 30 Гр, верхняя часть живота - 50 Гр, грудная клетка - 100 Гр, конечности - 200 Гр.

Степень чувствительности различных тканей к облучению неодинакова. Если рассматривать ткани органов в порядке уменьшения их чувствительности к действию облучения, то получим следующую последовательность: лимфатическая ткань, лимфатические узлы, селезенка, зобная железа, костный мозг, зародышевые клетки. Большая чувствительность кроветворных органов к радиации лежит в основе определения характера лучевой болезни.

При однократном облучении всего тела человека поглощенной дозой 0,5 Гр через сутки после облучения может резко сократиться число лимфоцитов. Уменьшается также и количество эритроцитов (красных кровяных телец) по истечении двух недель после облучения. У здорового человека насчитывается порядка 10 4 красных кровяных телец, причем ежедневно вое-производится 10 .У больных лучевой болезнью такое соотношение нарушается и в результате организм погибает.

Важным фактором при воздействии ионизирующего излучения на организм является время облучения. С увеличением мощности дозы поражающее действие излучения возрастает. Чем более дробно излучение по времени, тем меньше его поражающее действие (рис. 2.17).

Внешнее облучение альфа-, а также бета-частицами менее опасно. Они имеют небольшой пробег в ткани и не достигают кроветворных и других внутренних органов. При внешнем облучении необходимо учитывать гамма- и нейтронное облучение, которые проникают в ткань на большую глубину и разрушают ее, о чем более подробно рассказывалось выше.

5. ДВА ВИДА ОБЛУЧЕНИЯ ОРГАНИЗМА: ВНЕШНЕЕ И ВНУТРЕННЕЕ

Ионизирующее излучение может двумя способами оказывать воздействие на человека. Первый способ - внешнее облучение от источника, расположенного вне организма, которое в основном зависит от радиационного фона местности на которой проживает человек или от других внешних факторов. Второй - внутреннее облучение, обусловленное поступлением внутрь организма радиоактивного вещества, главным образом с продуктами питания.

Большую опасность представляют продукты питания и воздух, содержащие изотопы плутония и америция, которые обладают высокой альфа активностью. Плутоний, выпавший в результате Чернобыльской катастрофы, является самым опасным канцерогенным веществом. Альфа излучение имеет высокую степень ионизации и, следовательно, большую поражающую способность для биологических тканей.

Попадание плутония, а также америция через дыхательные пути в организм человека вызывает онкологию легочных заболеваний. Однако следует учесть, что отношение общего количества плутония и его эквивалентов америция, кюрия к общему количеству плутония, попавшего в организм ингаляционным путем незначительно. Как установил Беннетт, при анализе ядерных испытаний в атмосфере, на территории США соотношение выпадения и ингаляции равно 2,4 млн. к 1, то есть подавляющее большинство альфа-содержащих радионуклидов от испытаний ядерного оружия ушли в землю не оказав влияния на человека. В выбросах Чернобыльского следа наблюдались также частицы ядерного топлива, так называемые горячие частицы размером около 0,1 микрона. Эти частицы также могут проникать ингаляционным путем в легкие и представлять серьезную опасность.

Внешнее и внутреннее облучения требуют различные меры предосторожности, которые должны быть приняты против опасного действия радиации.

Внешнее облучение в основном создается гамма содержащими радионуклидами, а также рентгеновским излучением. Его поражающая способность зависит от:

а) энергии излучения;

б) продолжительности действия излучения;

в) расстояния от источника излучения до объекта;

г) защитных мероприятий.

Между продолжительностью времени облучения и поглощенной дозой существует линейная зависимость, а влияние расстояния на результат радиационного воздействия имеет квадратичную зависимость.

Для защитных мероприятий от внешнего облучения используются в основном свинцовые и бетонные защитные экраны на пути излучения. Эффективность применения материала в качестве экрана для защиты от проникновения рентгеновских или гамма-лучей зависит от плотности материала, а также от концентрации содержащихся в нем электронов.

Если от внешнего облучения можно защититься специальными экранами или другими действиями, то с внутренним облучением это сделать не представляется возможным.

Различают три возможных пути, по которым радионуклиды способны попасть внутрь организма:

а) с пищей;

б) через дыхательные пути с воздухом;

в) через повреждения на коже.

Следует отметить, что радиоактивные элементы плутоний и америций проникают в организм в основном с пищей или при дыхании и очень редко через повреждения кожи.

Как отмечает Дж. Холл, органы человека реагируют на поступившие в организм вещества исходя исключительно из химической природы последних, вне зависимости от того, являются они радиоактивными или нет. Химические элементы такие как натрий и калий, входят в состав всех клеток организма. Следовательно, их радиоактивная форма, введенная в организм, будет также распределена по всему организму. Другие химические элементы имеют склонность накапливаться в отдельных органах, как это происходит с радиоактивным йодом в щитовидной железе или кальцием в костной ткани.

Проникновение радиоактивных веществ с пищей внутрь организма существенно зависит от их химического взаимодействия. Установлено, что хлорированная вода увеличивает растворимость плутония, и как следствие инкорпорацию его во внутренние органы.

После того, как радиоактивное вещество попало в организм, следует учитывать величину энергии и вид излучения, физический и биологический период полураспада радионуклида. Биологическим периодом полувыведения называют время, которое необходимо для выведения из организма половины радиоактивного вещества. Некоторые радионуклиды выводятся из организма быстро, и поэтому не успевают нанести большого вреда, в то время как другие сохраняются в организме в течение значительного времени.

Период полувыведения радионуклидов, существенно зависит от физического состояния человека, его возраста и других факторов. Сочетание физического периода полураспада с биологическим, называется эффективным периодом полураспада - наиболее важным в определении суммарной величины излучения. Орган, наиболее подверженный действию радиоактивного вещества называют критическим. Для различных критических органов разработаны нормативы, определяющие допустимое содержание каждого радиоактивного элемента. На основании этих данных созданы документы, регламентирующие допустимые концентрации радиоактивных веществ в атмосферном воздухе, питьевой воде, продуктах питания. В Беларуси в связи с аварией на ЧАЭС действуют Республиканские допустимые уровни содержания радионуклидов цезия и стронция в пищевых продуктах и питьевой воде (РДУ-92). В Гомельской области введены по некоторым пищевым продуктам питания, например детского, более жесткие нормативы. С учетом всех вышеперечисленных факторов и нормативов, подчеркнем, что среднегодовая эффективная эквивалентная доза облучения человека не должна превышать 1 мЗв в год.

1. Савенко В.С. Радиоэкология. - Мн.: Дизайн ПРО, 1997.

2. М.М. Ткаченко, “Радіологія (променева діагностика та променева терапія)”

3. А.В. ШУМАКОВ Краткое пособие по радиационной медицине Луганск -2006

4. Бекман И.Н. Лекции по ядерной медицине

5. Л.Д. Линденбратен, Л.Б. Наумов Медицинская рентгенология. М. Медицина 1984

6. П.Д. Хазов, М.Ю. Петрова. Основы медицинской радиологии. Рязань,2005

7. П.Д. Хазов. Лучевая диагностика. Цикл лекций. Рязань. 2006