Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, - аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, - половые хромосомы. У человека «женскими» половыми хромосомами являются две Х -хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х -хромосом. Пол, у которого образуются гаметы одного типа, несущие Х -хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека - Х -хромосома и Y -хромосома. При образовании гамет половина сперматозоидов получает Х -хромосому, другая половина - Y -хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол - гетерогаметный. Если образуется зигота, несущая две Х -хромосомы, то из нее будет формироваться женский организм, если Х -хромосому и Y -хромосому - мужской.

Характеристика половых хромосом

первые годы XX в. некоторые гистологи, изучая число хромосом у разных видов животных, обнаружили, что у некоторых видов имеется два типа сперматозоидов с разным числом хромосом. В 1902 г. американский биолог К.Мак-Кланг впервые высказал гипотезу, что пол организма может определяться его хромосомным набором. Эта гипотеза была развита и проверена американским цитологом Вильсоном. В работах 1905-1906 гг. он показал, что у самцов и самок может быть разное число хромосом или что они имеют пару хромосом разной формы. Этот вопрос был детально изучен на плодовой мушке дрозофиле, излюбленном объекте исследований генетиков. В 1910 г. американские генетики Т.Г.Морган и его сотрудники А.Стертевант, К.Бриджес и Г.Меллерустановили роль хромосом в определении пола у этой мушки. Оказалось, что у дрозофил три пары хромосом не имеют отношения к определению пола. Такие хромосомы называют соматическими хромосомами, или аутосомами. А четвертая пара хромосом тесно связана с определением пола и их называют половыми хромосомами.

Половые хромосомы оказались двух типов: длинные палочковидные, которые назвали Х-хромосомами, и изогнутые, которые назвали Y-хромосомами. Их сочетание и определяло пол мухи. Если в зиготу попадало две X-хромосомы, то такая зигота давала самку. Если же в зиготу попадали Х-хромосома и Y-хромосома, то развивался самец (рис. 108). Яйцеклетки всегда имели X-хромосому, а сперматозоиды были двух типов: с Х-хромосомой и с Y-хромосомой. Если сперматозоиды обоих типов одинаково эффективны (сливаются с яйцеклетками одинаково часто и при этом возникают одинаково жизнеспособные зиготы), то число самцов и самок в потомстве получается одинаковым.

До работ по генетике пола не было ни одного доказательства, что какой-то признак организма связан с определенной хромосомой. В ходе этих работ было выяснено, что такой важный признак, как пол, обуславливается половыми хромосомами. Этот результат сам по себе был важным доказательством роли хромосом в наследственности. Но Морган и его сотрудники, кроме того установили, что один из генов, определяющих окраску глаз дрозофил, лежит в половой Х-хромосоме. (Про признаки, гены которых лежат в половых хромосомах, говорят, что они сцеплены с полом. Изучение наследования гена окраски глаз дало еще одно доказательство тому, что гены расположены в хромосомах.

У дрозофил самки образуют одинаковые гаметы, в каждой из которых имеется половая Х-хромосома. Говорят, что у дрозофил женский пол является гомогаметным. Напротив, самцы образуют разные гаметы: в одних содержится Х-хромосома, а в других - Y-хромосома. Такой пол называется гетерогаметным. Если нарисовать решетку Пеннета, то и она показывает, что самцов и самок в потомстве должно быть равное число.

Хромосомная теория

Сущность хромосомной теории определения пола. Очень давно люди заметили, что соотношение полов у раздельнополых организмов близко к 1: 1, т. е. самцы и самки встречаются одинаково часто. Ниже указан процент мужских особей у разных организмов.

Еще Мендель обратил внимание, что такое же расщепление 1: 1 характерно для анализирующего скрещивания: АаХаа. Было высказано предположение, что один из полов должен быть гомозиготным, а другой - гетерозиготным. Первое экспериментальное доказательство в пользу этой гипотезы было получено К. Корренсом. Среди рода Bryonia (переступень) есть двудомные (В. dioica) и однодомные (В. alba) виды. Для того чтобы определить, как наследуют пол мужские и женские растения двудомного вида, было произведено скрещивание их с однодомным. Оказалось, что в потомстве женских растений были только женские, а в потомстве мужских - половина женских и половина мужских растений. Отсюда был сделан вывод, что женские растения Bryonia гомозиготны, а мужские - гетерозиготны.
Пол, образующий одинаковые в отношении определения пола гаметы, назвали гомогаметным, а пол, образующий разные гаметы, - гетерогаметным.
Решающее доказательство в пользу такого заключения, как было уже сказано (см. гл. 8), получили цитологи. Еще в конце прошлого века у клопа Lygaeus при изучении сперматогенеза были описаны гаплоидные сперматоциты II двух сортов: сХ-хромосомой и У-хромосомой, в отличие от самок, которые в яйцеклетках, кроме 6 аутосом, одинаковых с самцами, обязательно имели Х-хромосому (рис. 120). У другого клопа Protenor гетерогаметным полом также оказался мужской. Но у этого вида половина сперматоцитов, кроме 6 аутосом, имела Х-хромосому, а половина ее не имела (рис. 120).
Было высказано предположение, что Хи У-хромосомы имеют отношение к определению пола, их назвали половыми хромосомами. Экспериментальные доказательства этого были получены Т. Морганом и его сотрудниками при изучении наследования признаков, сцепленных с полом (см. гл. 8). Так была впервые сформулирована хромосомная теория определения пола.
Половые хромосомы и их роль в определении пола. Это открытие стимулировало дальнейшие цитологические исследования. Половые хромосомы были найдены у многих организмов. Среди растений впервые половые хромосомы были описаны у печеночного мха Sphaerocarpus. Известны они у высших растений: меландриума, щавеля, элодеи, хмеля и других. У животных они описаны для многих насекомых, птиц, млекопитающих. Описаны они и у человека.
Изучение половых хромосом показало, что они отличаются от аутосом не только генетически (см. гл. 8), но и цитологически. Половые хромосомы богаты гетерохроматином (см. гл. 2). Редупликация их происходит асинхронно с аутосомами, а у гомогаметного пола одна из Х-хромосом репродуцируется позже


остальных. В мейозе они часто сильно спирализованы (гетеропикноз). ПолоКариотипы С£ШЦ0В и самок вые хромосомы у гетерогаметного и хромосомные наборы гапола (гетерОМОрфные пары) не КОНЪмет гетерогаметного пола, югируют или конъюгируют лишь частично, что указывает на гомологичность лишь отдельных участков. Как уже говорилось (см. гл. 8), при расхождении Хи Ухромосом в редукционном делении образуются 2 разные клетки: одна с Х-хромосомой, другая - с У-хромосомой, следовательно, соотношение гамет с Хи У-хромосомой, образуемых гетерогаметный полом, бывает точно 1:1. Точно так же два сорта гамет образуются, если клетка содержит одну А-хромосому, при этом 50% гамет имеет Х-хромосому, а 50% не имеет ее. Гаметы, образуемые гомогаметным полом, все одинаковые и содержат Х-хромосому (название гомогаметный и указывает на это). В результате оплодотворения возникает равное количество самцов и самок. Иными словами, хромосомный механизм определения пола является идеальным саморегулирующимся механизмом. Анализ половых хромосом у различных организмов показал, что существуют разные типы хромосомного определения пола (табл. 14). Они получили название тип ХО и тип ХУ. Гетерогаметный полом может быть как мужской, так и женский. Сейчас описаны и более сложные комплексы половых хромосом, но они принципиально не отличаются от только что названных.

Гинандроморфизм. Иногда встречаются такие явления, которые как будто специально созданы природой для проверки правильности теории. В отношении хромосомной теории примером может служить явление гинандроморфизма. Организмы, совмещающие в себе части тела разных полов - мужского и женского, называют гинандроморфами (гин- 9, андр- d). Гинандроморфы существуют у тех видов, у которых четко выражен половой диморфизм (насекомые, птицы, человек), но встречаются они редко.
При латеральном гинандроморфизме, например у дрозофилы, одна половина тела имеет признаки женского пола, а другая - мужского (см. рис. на стр. 288). Как может возникнуть такой организм? Цитологические исследования показывают, что ткани гинандроморфа химерны: женская половина несет две Х-хромосомы, а мужская ■- одну.
На приведенном рисунке показан случай, когда у гинандроморфа рецессивный, сцепленный с полом ген white проявился на мужской стороне тела и не проявился на женской. Почему это так?
У гинандроморфа, возникшего из зиготы w+w, при первом делении дробления в силу каких-то необычных условий одна из Х-хромосом, несущая ген w+, в одной из дочерних клеток (бластомеров) утрачивается. Тогда две дочерние клетки окажутся неодинаковыми в отношении Z-хромосом: одна~~г, а вторая w.
Половина тела мухи, развившаяся из первой клетки, окажется женской и с красным глазом, а из второй разовьется половина тела с признаками мужского пола и с белым глазом, поскольку рецессивный ген w, содержащийся в единственной X-хромосоме, будет в гемизиготном состоянии.
Таким образом, и цитологический, и генетический анализ показывает, что в данном случае причиной гинандроморфизма может быть элиминация одной из Х-хромосом.
Кроме этого типа гинандроморфизма, который можно назвать монозиготным, известен также дизиготический гинандроморфизм. Он обнаружен у бабочек - Abraxas, тутового шелкопряда и у дрозофилы. Например, иногда в яйцеклетке тутового шелкопряда (самка гетерогаметна) образуются два женских пронуклеуса, один Из которых кроме аутосом (обозначим их А) содержит Х-хромосому (Х+А), а другой - У+А. При полиспермии оба пронуклеуса будут оплодотворены разными спермиями, тогда в одном из бластомеров будет ХХ + АА, а в другом - ХУ+АА. Это и приведет к развитию дизиготного гинандроморфа. Аналогично может возникать гинандроморф у дрозофилы, только здесь различия между бластомерами получаются за счет разных сперматозоидов (самцы гетерогаметны).
Исключения из хромосомной теории определения пола. По
мере накопления фактов хромосомная теория определения пола не только находила подтверждение, но и встречала некоторые трудности. Оставался открытым вопрос о том, не являются ли половые хромосомы индикаторами пола, вторично-половыми признаками?
Анализ исключительных особей у дрозофил, которые были получены в опытах Бриджеса, как результат нерасхождения половых хромосом (см. гл. 8) показал, что особи, имеющие, кроме аутосом, ХХУ-хромосомы (ХХУ+АА), являются самками, а особи ХО+АА - самцами. Эти факты убедительно говорили о том, что половые хромосомы отнюдь не индикаторы пола. Но как же они определяют пол, если особи ХУ+АА и ХО+АА являются самцами, а ХХ+АА и ХХУ+АА самками? Очевидно, дело обстоит не так просто, как это казалось вначале.

Балансовая теория

В результате неправильного расхождения хромосом в мейозе иногда возникают гаметы с необычным числом половых хромосом. Например, при образовании гамет самками дрозофил в одну из гамет могут попасть обе X-хромосомы, а в другую ни одной. Такие самки при скрещивании с обычными самцами дают потомков с необычными генотипами XXX и XXY. Какой же пол имеют эти мухи и мухи с другими необычными генотипами? Изучая этот вопрос, К.Бриджес в 1921 г. показал, что особи с генотипом XXY - самки, а особи с генотипами XXX - "сверхсамки" с необычно сильно развитыми яичниками. Бриджэс предположил, что у дрозофил пол определяется соотношением (балансом; почему эта теория и получила название балансовой теории определения пола) числа половых хромосом и аутосом. По предположению Бриджэса, Y-хромосома у дрозофил фактически не играет роли в определении пола. Например, если мухи имеют генотип 2A+2Х (диплоидный набор аутосом и две Х-хромосомы), так что одна Х-хромосома приходится на один гаплоидный набор аутосом, то это самка. Другие соотношения видны из табл. 128: Бриджэс получил также мух с генотипом ЗA+X, у которых отношение числа половых хромосом к числу аутосом равно 1/3, т.е. еще меньше, чем у нормальных самцов. Из таких зигот развивались сверхсамцы.

Хромосомный механизм определения пола

Фенотипические различия между особями разного пола обусловлены генотипом. Гены находятся в хромосомах. Есть правила индивидуальности, постоянства, парности хромосом. Диплоидный набор хромосом называют кариотипом . В женском и мужском кариотипе 23 пары (46) хромосом (рис. 78).

22 пары хромосом одинаковы. Их называют аутосомами . 23-я пара хромосом - половые хромосомы . В женском кариотипе одинаковые

Рис. 78. Кариотипы разных организмов. 1 - человека; 2 - комара; 3 - растения скерды.

половые хромосомы XX. В мужском кариотипе половые хромосомы XY. Y-хромосома очень мала и содержит мало генов. Сочетание половых хромосом в зиготе определяет пол будущего организма.

При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. В каждой яйцеклетке есть 22 аутосомы + Х-хромосома. Пол, образующий гаметы, одинаковые по половой хромосоме, называют гомогаметным полом. Половина сперматозоидов содержит - 22 аутосомы + Х-хромосома, а половина 22 аутосомы + Y. Пол, образующий гаметы, различные по половой хромосоме, называют гетерогаметным. Пол будущего ребенка определяется в момент оплодотворения. Если яйцеклетка оплодотворена сперматозоидом, имеющим Х-хромосому, развивается женский организм, если Y-хромосому - мужской (рис. 79).


Рис. 79. Хромосомный механизм образования пола.

Вероятность рождения мальчика или девочки равна 1:1 или 50%:50%. Такое определение пола характерно для человека и млекопитающих. У некоторых насекомых (кузнечики и тараканы) нет Y-хромосомы. Самцы имеют одну X - хромосому (Х0), а самки - две (XX). У пчел самки имеют 2n набор хромосом (32 хромосомы), а самцы - n (16 хромосом). У женщин в соматических клетках две половые Х-хромосомы. Одна из них образует глыбку хроматина, которая бывает заметна в интерфазных ядрах при обработке реактивом. Эта глыбка - тельце Барра. У мужчин тельце Барра отсутствует, потому что у них всего одна Х-хромосома. Если при мейозе в яйцеклетку попадает сразу две XX-хромосомы и такая яйцеклетка будет оплодотворена сперматозоидом, то зигота будет иметь большее число хромосом.


Например, организм с набором хромосом ХХХ (трисомия по X-хромосоме) по фенотипу - девочка. У нее недоразвиты половые железы. В ядрах соматических клеток выделяются два тельца Барра.

Организм с набором хромосом XXY(синдром Клайнфелътера) по фенотипу - мальчик. У него недоразвиты семенники, отмечается физическая и умственная отсталость. Есть тельце Барра.

Хромосомы ХО (моносомия по Х-хромосоме) - определяют синдром Шерешевского-Тернера . Организм с таким набором - девочка. У нее недоразвиты половые железы, малый рост. Нет тельца Барра. Организм, не имеющий Х-хромосомы, а содержащий только Y- хромосому - нежизнеспособен.

Наследование признаков, гены которых находятся в Х- или Y-хромосомах, называют наследованием, сцепленным с полом. Если гены находятся в половых хромосомах, они наследуются сцепленно с полом.

У человека в Х-хромосомах есть ген, определяющий признак свертывания крови. Рецессивный ген вызывает развитие гемофилии. В Х-хромосоме есть ген (рецессивный), который отвечает за проявление дальтонизма. У женщин две Х-хромосомы. Рецессивный признак (гемофилия, дальтонизм) проявляется только в том случае, если гены, отвечающие за него, будут находиться в двух Х-хромосомах: X h X h ; X d X d . Если в одной Х-хромосоме будет доминантный ген Н или D, а в другой - рецессивный h или d, то гемофилии или дальтонизма не будет. У мужчин одна Х-хромосома. Если в ней есть ген Н или h, то эти гены обязательно проявят свое действие, потому что Y-хромосома не несет этих генов.

Женщина может быть гомозиготна или гетерозиготна по генам, локализованным в Х-хромосоме, но рецессивные гены проявляются только в гомозиготном состоянии.


Если мать - носитель гена


Если гены находятся в Y-хромосоме (голандрическое наследование ), то признаки, ими обусловленные, передаются от отца сыну. Например, через Y-хромосому наследуется волосатость ушей. У мужчин одна Х-хромосома. Все гены, находящиеся в ней, в том числе и рецессивные, проявляются в фенотипе. У гетерогаметного пола (мужского) большинство генов, локализованных в Х-хромосоме, находятся в гемизиготном состоянии, т. е. не имеют аллельной пары.

Y-хромосома содержит некоторые гены, гомологичные генам Х-хромосомы, например, гены геморрагического диатеза, общей цветной слепоты и др. Эти гены наследуются как через Х-, так и через Y-хромосому.

Вопросы для самоконтроля

  1. Какие правила хромосом имеются?
  2. Что такое кариотип?
  3. Сколько аутосом у человека?
  4. Какие хромосомы у человека отвечают за развитие пола?
  5. Какова вероятность рождения мальчика или девочки?
  6. Как определяют пол у кузнечиков и тараканов?
  7. Как определяют пол у пчел?
  8. Как определяют пол у бабочек и птиц?
  9. Что такое тельце Барра?
  10. Как можно определить наличие тельца Барра?
  11. Чем можно объяснить появление большего или меньшего числа хромосом в кариотипе?
  12. Что такое сцепленное с полом наследование?
  13. Какие гены у человека наследуются сцепленно с полом?
  14. Как и почему проявляют свое действие рецессивные гены, сцепленные с полом у женщин?
  15. Как и почему проявляют свое действие рецессивные гены, сцепленные с Х-хромосомой у мужчин?

Ключевые слова темы "Хромосомное определение пола"

  • аутосомы
  • бабочки
  • вероятность
  • волосатость ушей
  • гаметы
  • генотип
  • гетерогаметный пол
  • глыбка хроматина
  • гомогаметный пол
  • дальтонизм
  • девочка
  • действие
  • женщина
  • зигота
  • индивидуальность
  • кариотип
  • кузнечики
  • мальчик
  • мейоз
  • млекопитающее
  • момент
  • моносомия
  • мужчина
  • набор
  • насекомые
  • наследование
  • носитель
  • обработка реактивом
  • оплодотворение
  • организм
  • особь
  • парность
  • половые клетки
  • потомство
  • правила
  • признак
  • птицы
  • пчелы
  • развитие
  • различия
  • рождение
  • свертывание крови
  • семенники
  • синдром Дауна
  • синдром Клайнфельтера
  • синдром Шершевского-Тернера
  • слепота
  • созревание
  • состояние
  • сочетание
  • сперматозоиды
  • тараканы
  • тельце Барра
  • трисомия
  • Y-хромосома
  • фенотип
  • хромосома
  • Х-хромосома
  • человек
  • яйцеклетка

ТЕМА: Изменчивость и наследственность. Методы изучения наследственности. Генетика человека.

Цель: Изучить явление изменчивости и наследственности, виды изменчивости. Уметь давать оценку степени и характеру изменчивости и определяющим ее факторам, прогнозировать степень риска проявления наследственной патологии.

Задание для самоподготовки

    Наследственность и изменчивость – функциональные свойства живого. Диалектическое единство наследственности и изменчивости.

    Понятие о генетическом материале и его свойствах: хранение, изменение, репарация.

    Виды изменчивости: модификационная, комбинативная, мутационная.

    Классификация мутаций:

а) соматические и генеративные;

б) спонтанные и индуцированные;

в) генные, хромосомные, геномные.

    Методы изучения наследственности человека. Генеалогический и близнецовый методы, их значение для медицины.

    Цитологический и биохимический методы диагностики хромосомных нарушений человека, их значение для медицины.

    Популяционно-статистический метод. Закон Харди-Вайнберга.

    Дерматоглифика в изучении наследственности человека.

    Наследственные болезни человека.

    Заполнить таблицы 30, 31, 32, 33, 34 (см. Приложение 2).

    Решить задачи 69-77 (см. Приложение 1).

НАСЛЕДСТВЕННОСТЬ – это свойство организмов обеспечивать материальную и функциональную преемственность между поколениями, а также обуславливать специфический характер индивидуального развития в определенных условиях внешней среды.

ИЗМЕНЧИВОСТЬ – это изменение наследственных факторов и проявление этих изменений в процессе развития. Благодаря изменчивости, организмы способны приспосабливаться к изменяющимся условиям окружающей среды. Различают изменчивость:

    ненаследственную или фенотипическую

    наследственную или генотипическую.

Наследственность и изменчивость неразрывно связаны с эволюцией. В процессе филогенеза органического мира они находятся в диалектическом единстве . Новые свойства организма появляются только благодаря изменчивости, но она лишь тогда может играть роль в эволюции, когда появившиеся изменения сохраняются в последующих поколениях, т.е. наследуются.

ГЕНОТИП – совокупность наследственной информации, закодированной в генах. Элементарная единица наследственности – ген – участок ДНК, определяющий последовательность аминокислот в белке. ДНК хранится в ядре клетки. Ген имеет сложную структуру, внутри которой могут осуществляться процессы мутирования и рекомбинации. Гены могут не кодировать белок, а контролировать этот процесс. Под действием различных физических и химических агентов, а также при нормальном биосинтезе ДНК в клетке могут возникнуть повреждения.Репарация – способность клеток к исправлению повреждений в молекулах ДНК. Она может бытьсветовой итемновой . Присветовой репарации исправляются повреждения, возникшие только под воздействием ультрафиолетовых лучей, осуществляются на свету ферментом, активирующимся квантами видимого света. Притемновой репарации исправляются повреждения, появившиеся под влиянием физических и химических агентов, происходит без участия видимого света.

ФЕНОТИП – совокупность всех внешних и внутренних признаков организма, сформировавшихся в процессе онтогенеза в данных условиях среды.

Формирование того или иного фенотипа, т.е. особи с определенными признаками и свойствами, обусловлено, с одной стороны, генотипом этой особи, а с другой – теми конкретными условиями среды, в которых протекает развитие фенотипа.

Ненаследуемые фенотипические изменения, вызванные воздействием условий среды, называют МОДИФИКАЦИОННОЙ изменчивостью. Размах модификационной изменчивости зависит отнормы реакции организма.Норма реакции – диапазон изменений, при котором один генотип может давать различные фенотипы. Это предел модификационной изменчивости данного признака. Модификационная изменчивость соответствует условиям окружающей среды и является приспособительной.

Генотипическая изменчивость связана с изменением генотипа. Виды генотипической изменчивости:

    комбинативная

    мутационная

КОМБИНАТИВНАЯ изменчивость связана с получением новых сочетаний генов в генотипе. Достигается это в результате 3-х процессов (цитологическое обоснование комбинативной изменчивости):

    независимого расхождения хромосом при мейозе,

    случайного их сочетания при оплодотворении,

    рекомбинации генов благодаря кроссинговеру.

При этом сами гены не изменяются, но новые сочетания их между собой приводят к появлению организмов с новым фенотипом.

МУТАЦИОННАЯ изменчивость – скачкообразные и устойчивые изменения генетическоего материала, передающиеся по наследству. При мутационной изменчивости изменяется структура гена, структура или число хромосом.

В зависимости от места возникновения различают мутации соматические и генеративные. СОМАТИЧЕСКИЕ – возникающие в соматических клетках. Они приводят к изменению только части организма, возникают мозаично. Особи, в которых они возникают, называют химерами или мозаиками. ГЕНЕРАТИВНЫЕ – возникающие в незрелых и зрелых половых клетках. Генеративные мутации передаются по наследству и проявляются при скрещивании в последующих поколениях.

В зависимости от причин возникновения мутации бывают спонтанные и индуцированные. СПОНТАННЫЕ возникают в естественных условиях без специального воздействия необычными агентами или в результате физиологических и биохимических изменений организма. ИНДУЦИРОВАННЫЕ возникают под влиянием специальных воздействий (ионизирующая радиация, рентгеновские лучи, химические вещества, экстремальные условия и прочее).

По характеру нарушения генотипа различают мутации генные, хромосомные и геномные. ГЕННЫЕ (или точковые) – изменения в структуре ДНК. ХРОМОСОМНЫЕ – связаны с нарушением структуры хромосом. ГЕНОМНЫЕ – связаны с изменением числа хромосом.

Таким образом, наследственность и изменчивость – общие свойства жизни, лежат в основе относительной стабильности видов. Они связаны между собой, составляя противоположные стороны одного и того же явления. В процессе филогенеза они находятся в непрерывном, диалектическом единстве.

Подавляющее большинство высших растений обоеполые (гермафродитные). Морфологические и физиологические различия женского и мужского пола у них выражаются только в процессах дифференциации половых элементов. Гаметы таких организмов генетически совершенно идентичны. Но около 5% цветковых растений двудомные: тычиночные и пестичные цветки у них находятся на различных особях (женских и мужских). У таких организмов отчетливо выражен половой диморфизм.

У некоторых двудомных растений также обнаружены половые хромосомы. Это: дрема белая; спаржа; конопля посевная; хмель обыкновенный; шпинат; виды рода Ива; виды рода Тополь; виды рода Щавель. У всех у них женский пол – гомогаметный, мужской – гетерогаметный. У хмеля японского и двух видов щавеля мужская форма имеет генотип XYY . У полиплоидных видов земляники женский пол – гетерогаметный, мужской – гомогаметный. У диоскореи ♀ XX , ♂ XO .

У многих двудомных растений специальных половых хромосом нет. Все хромосомы мужского и женского пола морфологически одинаковы. Пол у них связан с наличием определенных генов в аутосомах.

У огромного большинства организмов пол определяется в момент оплодотворения – сингамно – и связан с наличием специальных половых хромосом, которые в отличие от остальных хромосом (аутосом) обозначаются буквами X и Y. Различают четыре основных типа хромосомного определения пола.

Типы пола при сингамии

Из таблицы 3.1 видно, что у I и II типов женский пол гомогаметный (образует яйцеклетки, одинаковые по половым хромосомам), а мужской пол – гетерогаметный (образует два вида сперматозоидов: с X и Y хромосомами). У II и IV типов – наоборот. Гетерогаметность одного пола и гомогаметность другого у каждого вида животных обеспечивает равное количество потомков женского и мужского пола, то есть в соотношении 1:1.

У растений, так же как и у животных, существует два основных типа генетического контроля пола. Первый из них целиком определяется присутствием или отсутствием Х-хромосомы. Наследование пола по этому типу идет, например, у щавеля малого и дремы белой. У этих растений одна У-хромосома определяет мужской пол независимо от числа Х-хромосом, которое у полиплоидных видов этого растения может быть увеличено в несколько раз. Только при отношении X: У, равном 8:1, нормальные мужские формы не развиваются.

Второй тип, характерный для щавеля обыкновенного, связан с факторами, находящимися в половых хромосомах и аутосомах, и развитие признаков того или иного пола в этом случае, как и у дрозофилы, определяется соотношением половых хромосом и аутосом. У щавеля обыкновенного женские и мужские формы и интерсексы характеризуются индексом Х:А.

Данные генетики пола у растений используются в селекционной: работе по созданию однодомных форм конопли и в селекции других раздельнополых культур.

Пол организма, как и любой признак, развивается не только под влиянием генотипа, но и под воздействием факторов внешней среды. Однако стоит сказать, что для разных организмов степень влияния генотипа и факторов внешней среды на определение пола различна, т.е. у одних организмов (человек, большинство млекопитающих) определяющим является генотип, а других (рыбы, некоторые черви) – факторы внешней среды. Так Существует три типа определения пола в природе: эпигамный, прогамный и сингамный. В первом случае пол определяется после оплодотворения, во втором – до оплодотворения, а в третьем – в момент оплодотворения. Примером эпигамного оплодотворения является оплодотворение у морского червя боннелии. У боннелии очень мелкие самцы обитают в матке гораздо более крупных самок (рис. 3.1). Бесполая свободно плавающая личинка боннелии при попадании на хоботок самки под влиянием выделяемых этим хоботком веществ превращается в самца, мигрирующего затем в половые органы самки. Если же личинка не встречает самку, то прикрепляется ко дну и превращается в самку. В редких случаях эпигамное определение пола встречается у двудомных растений. Так у японской ариземы растения, выросшие из крупных клубней, образуют женские цветки. Из щуплых клубней развиваются растения, дающие мужские цветки. У некоторых животных (крокодил, черепаха) пол потомка определяется температурой, при которой идет формирование зародыша в яйце, зарытом в песке.

У некоторых червей и коловраток наблюдается прогамное определение пола. Самки откладывают неоплодотворенные яйца двух сортов: крупные, богатые цитоплазмой, и мелкие, относительно бедные ею. После оплодотворения первые развиваются в самок, а вторые – в самцов (рис. 3.2).



Иногда факторы внешней среды оказывают существенное влияние на определение пола и у млекопитающих. Так, у крупного рогатого скота при одновременном развитии двух разнополых близнецов бычки рождаются нормальными, а телочки – часто интерсексами (организм, у которого в той или иной степени развиты одновременно признаки как одного, так и другого пола). Это объясняется более ранним выделением мужских половых гормонов и влиянием их на пол второго близнеца. Описаны случаи проявления у человека мужского фенотипа при содержании половых хромосом XX и женского (синдром Мориса или тестикулярной феминизации) – при генотипе XY. При синдроме Мориса и эмбриогенезе идет закладка семенников, начинающих продуцировать мужские половые гормоны. Однако у таких зародышей не образуется белок-рецептор (рецессивная генная мутация), который обеспечивает чувствительность клеток развивающихся органов к тестостерону. Вследствие этого развитие по мужскому типу прекращается, и проявляется женский фенотип. Переопределение пола можно наблюдать у атлантической сельди. Сельди живут небольшими стаями, в каждой из которых имеется один самец и несколько самок. Если самец погибает, то через некоторое время самая крупная самка превращается в самца.


Пол организмов, совокупность морфологических и физиологических особенностей организма, обеспечивающих половое размножение, сущность которого сводится в конечном итоге к оплодотворению. При этом мужские и женские половые клетки - гаметы сливаются зиготу, из которой развивается новый организм. В зиготе объединяются 2 гаплоидных (одинарных) набора хромосом материнской и отцовской гамет. В половых клетках нового организма образуются гаплоидные наборы уже перекомбинированных отцовских и материнских хромосом (в результате обмена участками гомологичных родительских хромосом - кроссинговера - и случайного их расхождения по дочерним клеткам во время мейоза). Поэтому в обоеполой популяции постоянно возникает множество генетически разных особей, что создаёт благоприятные условия для естественного отбора более приспособленных форм. В этом заключается основное преимущество полового размножения перед бесполым. Половое размножение преобладает у животных и высших растений; оно встречается и у многих микроорганизмов (конъюгация у бактерий сопровождается частичным обменом наследственным материалом - нитями ДНК). Половой процесс у одноклеточных организмов не требует значительной дифференциации П. (одна и та же клетка может быть и клеткой тела, и половой). У многоклеточных диплоидных организмов возникли специальные гаплоидные половые клетки: крупные и малоподвижные или неподвижные у женского, мелкие и обычно подвижные - у мужского. У большинства растений и лишь у некоторых животных оба типа гамет производятся одной особью, у большинства животных - разными особями, которые в связи с этим строго разделяются соответственно на самок и самцов. Помимо продуцирования клеток различного пола., самцы и самки различаются рядом морфологических и физиологических признаков, а также половым поведением, которые обеспечивают слияние половых клеток.

Определение пола

Все организмы, в том числе и раздельнополые, в генетическом отношении бисексуальны (двуполы), т.к. зиготы их получают генетическую информацию, потенциально дающую возможность развивать признаки мужского и женского пола. У обоеполых растений и некоторых гермафродитных животных женские и мужские репродуктивные органы и половые клетки развиваются из генетически одинаковых клеток под влиянием внутренних условий (по отношению к отдельным клеткам их можно рассматривать как внешние). Механизм переключения клеток на развитие в одном случае женских, в другом мужских репродуктивных органов полностью не раскрыт. В редких случаях у раздельнополых видов потенциально бисексуальные зиготы развиваются в самок или самцов под влиянием внешних условий. Например, у морского кольчатого червя бонеллия личинка, поселяясь на хоботке самки, развивается в самца, а на дне моря - в самку. У растения Arisaema japonica из крупных клубней, богатых питательными веществами, развиваются растения с женским цветками, а из мелких клубней - с мужскими. Определение пола под влиянием внешних условий называется фенотипическим, или модификационным.

Шире распространено генетическое определение пола. В этом случае зигота во время оплодотворения также получает потенциальные возможности для развития признаков обоих полов. Однако под влиянием генетических факторов в одной половине зигот пересиливает тенденция развития мужского пола, а в другой - женского. Специальный хромосомный механизм обеспечивает передачу одной половине потомства генов женского пола, а другой - генов мужского пола. В начале 20 в. было установлено, что у самцов некоторых видов насекомых в диплоидных (с двойным набором хромосом) клетках наряду с парами гомологичных хромосом имеется одна непарная хромосома. Самка же имеет две такие хромосомы. У самцов насекомых др. видов все хромосомы парные, но в одной из пар они морфологически несходные. Эти хромосомы, причастные к определению пола., назвали половыми а остальные - аутосомами. Половые хромосомы были обнаружены у многих раздельнополых организмов. Половую хромосому самца, повторяющуюся у самок, назвали Х-хромосомой, а не повторяющуюся - Y-хромосомой. Сочетание половых хромосом самца обозначают формулой X0 или XY, а самки - XX. Самцы с одной половой хромосомой продуцируют в равном количестве гаметы с Х-хромосомой и гаметы, лишённые её, т. е. с одним лишь гаплоидным набором аутосом (А); самки - гаметы только с Х-хромосомой. После случайного слияния мужских и женских гамет половина образовавшихся зигот будет иметь две Х-хромосомы (XX), а др. половина - только одну Х-хромосому. Первые станут самками, вторые - самцами.

Самцы с разными половыми хромосомами продуцируют в равном количестве гаметы, имеющие Х-хромосому, и гаметы, имеющие Y-хромосому. Женские гаметы этого вида генетически одинаковы - все они несут по одной Х-хромосоме. В результате половина яйцеклеток будет оплодотворена сперматозоидами с Y-хромосомой, а др. половина - с Х-хромосомой. Первые зиготы, имеющие структуру XY, разовьются в особей мужского пола, вторые - с XX - в особей женского пола. Самцы с одной Х-хромосомой или с двумя разными (XY) хромосомами имеют гетерогаметный пол, самки с ХХ-хромосомами - гомогаметный пол. У многих животных, наоборот, самки имеют гетерогаметный пол. Их половые хромосомы обозначают буквами Z и W или XY, а половые хромосомы гомогаметных самцов - ZZ или XX. У млекопитающих, нематод, моллюсков, иглокожих и у большинства членистоногих гетерогаметен мужской пол. У насекомых и рыб гетерогаметность наблюдается как у мужского, так и у женского пол. Гетерогаметность женского пола свойственна птицам, пресмыкающимся и некоторым земноводным.

Бисексуальные потенции, свойственные зиготе, обусловлены генами, локализованными в аутосомах и проявляющимися только под контролем др. генов - реализаторов пола. Именно эти гены открывают путь в одном случае генам, способствующим образованию женского пола, в другом - генам, обусловливающим развитие мужского пола. При генетическом определении пола по типу X0, XX реализаторы женского пола локализованы в Х-хромосомах, а мужского - в аутосомах. При сочетании одной дозы реализаторов женского П., локализованных в одной Х-хромосоме, с диплоидным набором реализаторов мужского П., локализованных в аутосомах, развивается мужской пол И только 2 дозы реализаторов женского пола, локализованные в 2 Х-хромосомах, пересиливают потенцию развития мужского пола и тем самым обусловливают женский пол. У человека полоопределяющую роль играет Y-хромосома. В аномальных случаях она сочетается с 2, 3 и даже 4 Х-хромосомами при нормальном наборе аутосом. Хотя это и приводит к патологическим отклонениям, однако все особи с такими наборами хромосом бывают мужского пола. Полоопределяющая роль Y-хромосом отмечена у многих видов животных, а среди растений - у дрёмы луговой. У дрозофилы Y-хромосома почти не содержит генов, т. е. наследственно инертна; реализаторы женского пола. локализованы в Х-хромосоме, реализаторы мужского П. - в аутосомах. Развитие пола контролируется отношением Х-хромосом к набору аутосом (Х: А), условно принятым у самки за единицу (2Х:2А = 1): это отношение у самца равно 0,5 (Х:2А = 0,5). Увеличение этого отношения (полового индекса) свыше единицы приводит к чрезмерному развитию женских половых признаков («сверхсамки»), уменьшение же ниже 0,5 способствует появлению самцов с более выраженными мужскими признаками («сверхсамцы»). Особи с половым индексом 0,67 и 0,75 имеют промежуточное развитие признаков обоих полов и называют интерсексами. Явление интерсексуальности демонстрирует бисексуальную потенцию наследственной информации, передаваемой всем потомкам.

Механизм генетического контроля над развитием половых признаков может быть внутри- и межклеточным. Внутриклеточное определение П. не связано с образованием половых гормонов (например, у насекомых), и действие генов, определяющих П., ограничено клетками, в которых эти гены функционируют. При этом в одном организме могут нормально развиваться, не влияя друг на друга, участки тела с женскими и мужскими признаками При межклеточном определении пола., характерном для млекопитающих и птиц, под контролем генов вырабатываются половые гормоны , которые, проникая во все клетки организма, обусловливают фенотипическое развитие признаков соответствующего пола. Различают прогамное, сингамное и эпигамное определение пола. Прогамное определение пола происходит до оплодотворения яйца, например дифференцировка яйцеклеток на быстро и медленно растущие. Первые становятся крупными, и из них после оплодотворения развиваются самки, вторые отличаются меньшими размерами и дают самцов, хотя оба вида яйцеклеток генетически одинаковы. Сингамное определение пола происходит во время оплодотворения, но на разных стадиях этого процесса. У некоторых видов с мужской гетерогаметией и физиологической полиспермией (оплодотворение яйцеклетки несколькими сперматозоидами) пол определяется в момент слияния ядер половых клеток (кариогамия). Если с ядром яйцеклетки сливается мужское ядро с Y-хромосомой, разовьётся мужская особь, если с Х-хромосомой - женская. При женской гетерогаметии пол потомства зависит от того, какая из половых хромосом попадает в ядро яйцеклетки во время мейоза. Если в ядре окажется Z-хромосома, разовьётся особь мужского пол., если W-хромосома - женского. Т. о., в данном случае пол зиготы устанавливается до кариогамии. Эпигамное определение пола наблюдается у разнополых видов с фенотипическим определением пола, когда направленность развития в сторону мужского или женского пола обусловливается влиянием внешних условий после оплодотворения.

Зависимость признаков от пола

Зависят от пола признаки, ограниченные и контролируемые им. Ограниченные полом признаки в силу половой дифференциации могут проявиться только у одного из полов (продукция молока или яиц свойственна только женскому полу), хотя полимерные гены этих признаков локализованы в аутосомах обоих полов. Признаки, контролируемые полом, проявляются или у обоих полов (с разной степенью выраженности), или (чаще) только у одного из полов (более мощное развитие рогов у баранов, бороды - у козлов), хотя оба в равной мере содержат в аутосомах гены этих признаков. Несходное их развитие обусловлено значительным различием физиологических процессов в организмах разного пола.

Гены, детерминирующие признаки, сцепленные с полом, локализованы как в парных, так и непарных половых хромосомах и поэтому наследуются иначе, чем признаки, обусловленные парными генами, локализованными в аутосомах обоих полов. Если гены локализованы в непарной Y-хромосоме гетерогаметного самца, то обусловливаемые ими признаки наследуются лишь сыновьями, а при локализации генов в хромосоме гетерогаметной самки - только дочерьми. Наследуемые т. о. признаки называются голандрическими. Этот тип наследования обнаружен у некоторых видов рыб и насекомых. У др. видов животных он с полной достоверностью не доказан. При локализации генов в гомологичных Х- или Z- хромосомах обусловленные ими признаки передаются сцепленно с полом по типу, получившему название наследования крест-накрест, когда рецессивный признак матери проявится у сыновей, а доминантный - у дочерей (Т. X. Морган), что встречается у многих видов животных (например, трёхцветность кошек, полосатость окраски оперения и скорость его роста у кур). Много сцепленных с полом мутаций обнаружено у дрозофилы и тутового шелкопряда.

Сцепленными с П. могут быть и летали - гены, обусловливающие смертельный исход при развитии организма. Если гомогаметный родитель гетерозиготен по летали, локализованной в одной из гомологичных половых хромосом (X или Z), то половина его гетерогаметных потомков погибнет, получив деталь, губительному действию которой в генотипе не будет противопоставлен нормальный аллель. При гетерогаметии женского пола от леталей гибнет половина дочерей, а при гетерогаметии мужского пола - половина сыновей. Иногда мутантные гены в Х- и Z- хромосомах лишь частично снижают жизнеспособность потомства или вызывают различные заболевания, наиболее часто проявляющиеся у гетерогаметного пола. У человека обнаружено свыше 50 сцепленных с полом мутаций, приводящих большей частью к нарушению нормальной жизнедеятельности организма.

Соотношение полов

При фенотипическом определении П. оно зависит от количества развивающихся организмов, которые попадают под влияние внешних факторов, детерминирующих тот или иной пол. При генетическом определении пола соотношение полов у большинства видов, как правило, очень близко к 100♀: 100♂ (100 самок: 100 самцов). Однако и при таком определении пола есть отклонения. Так, у некоторых видов млекопитающих с мужской гетерогаметией статистически достоверно рождается на 1-2% больше потомков мужского пола.

Регуляция пола

Существенный сдвиг соотношения организмов в сторону одного из полов имеет как теоретическое, так и практическое значение, т.к. один из полов обычно более продуктивен. Методы регуляции пола, сведённые к 4 основным направлениям, применяются в зависимости от типа определения пола и биологических и хозяйственных особенностей вида.

Фенотипическое переопределение пола. Если действие генов пола реализуется посредством гормонов, половые признаки изменяются при пересадке половых органов одного пола другому или при введении в организм гормонов противоположного пола, а также некоторых аминокислот. Степень фенотипических изменений пола зависит от особенностей вида и дозы введённого препарата. Однако лишь в редких случаях (у некоторых рыб и земноводных) особи с фенотипически переопределённым пола продуцируют гаметы, противоположные их генотипическому полу. В следующем поколении, если действие гормонов прекращается, снова вступает в силу генетический механизм определения пола.

Управление генетическим механизмом определения пола или искусственное сочетание в яйцеклетке половых хромосом. Направленное изменение соотношения полов достигнуто в экспериментах с тутовым шелкопрядом, у которого пол строго определяется сочетанием половых хромосом (ZW - ♀; ZZ - ♂). Неоплодотворённые яйца после прогрева развиваются партеногенетически за счёт диплоидного ядра, не завершившего редукционного деления. Все клетки партеногенетического эмбриона сохраняют материнскую структуру, в частности и в отношении половых хромосом ZW, и, следовательно, развиваются только в самок (Б. Л. Астауров). Воздействием ионизирующих излучений и прогревом удалось подавить в свежеотложенном осеменённом яйце женское ядро и переключить развитие на мужское начало. Диплоидное ядро мужской зиготы образуется путём слияния двух мужских ядер и поэтому имеет структуру мужского П. ZZ. Из таких зигот развиваются гусеницы всегда мужского пола (X. Хасимото; Б. Л. Астауров). Этими методами впервые у с.-х. вида шелкопряда решена проблема произвольной регуляции пола. У млекопитающих учёные пытаются разделить по морфологическим и физиологическим особенностям Х- и Y-сперматозоиды с целью последующего осеменения одной категорией сперматозоидов. Однако этим способом пока не удалось достоверно сместить соотношение полов.

Раннее распознавание пола используется для сортировки вылупившихся цыплят на петушков и курочек по окраске оперения, сцепленной с полом, а также для «сверхранней» сортировки по полу тутового шелкопряда. Под действием ионизирующего облучения у шелкопряда пересажена аутосома с доминантным геном, обусловливающим тёмную окраску яиц тутового шелкопряда, на половую W- хромосому. Сцепление хромосом стойко передаётся по наследству. Те яйца, в которые попадает W- хромосома с пересаженным доминантным геном, приобретают тёмный цвет и развиваются в самок, в то время как яйца мужского пола, не получив доминантного гена, остаются непигментированными. Фотоэлектрические автоматы с большой скоростью разделяют разноокрашенные яйца по полам. Выведенные таким способом (В. А. Струнников и Л. М. Гуламова) меченые по полу породы шелкопряда находят практическое применение в советском шелководстве. В 60-х гг. 20 в. в опытах английских учёных Р. Эдуардса и

Р. Гарднера зафиксировано рождение потомства только одного пола и у млекопитающих. У кроликов извлекали из тела матери ранних зародышей, цитологическим методом определяли их пол и затем зародышей нежелательного пола выбраковывали, а зародышей нужного пола возвращали в матку. Около 20% возвращенных зародышей прижилось и развивалось в крольчат предсказанного учёными пола.

Изменение соотношения полов может быть почти у всех животных с генетическим определением пола результатом гибели половины зародышей гетерогаметного пола под действием сцепленных с полом деталей. Однако для многих с.-х. животных такой подход к регуляции пола экономически не оправдан. Исключение составляет тутовый шелкопряд. В СССР радиационным методом выведена (В. А. Струнников) генетически особая порода тутового шелкопряда, у которой в обоих Z- хромосомах самцов всегда имеется по одной негомологичной друг другу летали (сбалансированные летали). Если этих самцов скрестить с самками обычных пород, на стадии яйца одна половина самок погибнет от первой, а другая - от второй летали. Из яиц мужского пола вылупляются нормальные гусеницы. Этот способ позволяет в неограниченных количествах получать у тутового шелкопряда только один более продуктивный мужской пол.