3.1. Анатомия и физиология наружного и среднего уха человека . 1

3.2. Анатомия и физиология внутреннего уха. Строение слухового и статокинетического анализаторов .. 6

3.3. Патология органов слуха . 10

3.3.1. Повреждения уха . 10

3.3.2. Воспалительные заболевания наружного уха . 12

3.3.3. Заболевания среднего уха . 13

3.3.4. Заболевания внутреннего уха . 15

3.3.5. Нарушения слуха . 19

3.3.6. Дефекты органов слуха . 23

3.3.7. Субъективные реакции на шум .. 24

Анатомия и физиология наружного и среднего уха человека

Ухо человека является органом слуха и равновесия. Оно относится к дистантным анализаторам, собирающим звуковую (волновую) информацию из окружающей среды и определяет ориентацию положения тела человека в пространстве. Анатомически оно делится на наружное, среднее и внутреннее.

Наружное ухо представлено ушной раковиной, наружным слуховым проходом и барабанной перепонкой, которая отделяет наружное ухо от среднего.

Ушная раковина у человека имеет наружную и внутреннюю поверхности и образована эластическим хрящем, покрытым кожей. Хрящ определяет внешнюю форму ушной раковины, которая очень своеобразна и имеет выпячивания: завиток, противозавиток, козелок, противокозелок; полости: полость ушной раковины, чашу полости ушной раковины; треугольную ямку, ладьевидную борозду, переднюю и заднюю ушную бороздки, межкозелковую вырезку, мочку.

Ушная раковина имеет богатейшую иннервацию: из С1-С3 шейного сплетения; V,VII, IХ, Х черепных пар нервов; симпатическую иннервацию из шейных симпатических узлов. Она хорошо кровоснабжается, имея собственную артерию и вены.

Физиология ушной раковины заключается в том, что причудливость формы ее позволяет максимально сконцентрировать звуковые колебания из внешней среды и направить их в наружный слуховой проход.

Наружный слуховой проход представляет собой S-образно изогнутую трубку, снаружи – хрящевую (1/3) и более широкую, а в глубине – костную, узкую (2/3), Вход в него называется наружным слуховым проходом, а костная часть соприкасается с барабанной перепонкой. В хрящевой части прохода кожа очень богата сальными железами и особого рода железами, выделяющими специфический секрет желтоватого цвета – ушную серу.

Физиология наружного слухового прохода состоит в проведении звуковой волны по направлению к среднему уху и в устранении прямого воздействия колебаний воздуха на барабанную перепонку, предохраняя ее от возможного разрыва при сильном звуке. Ушная сера в узкой костной части наружного слухового прохода фиксирует попадающие из внешней среды крупные бактерии, пыль и мелкий бытовой мусор, которые удаляются вместе с естественным отхождением серы наружу.

Барабанная перепонка (мембрана) овальной формы, у взрослого размерами 9 х 11 мм, вставлена своим краем в костную бороздку наружного слухового прохода как в рамку (рис.2).

Снаружи покрыта истонченной кожей, а изнутри слизистой оболочкой. Внутренняя оболочка ее состоит из фиброзной соединительной ткани, волокна которой в периферической части перепонки идут в радиарном направлении, а в центральной части – циркулярно. Верхняя часть барабанной перепонки без фиброзных волокон, слабая, рыхлая. Нижняя – туго натянута.

При воздействии на барабанную перепонку звуковых волн она колеблется и ее колебательные движения передаются на слуховые косточки среднего уха, а через них – во внутреннее ухо, где эти колебания воспринимаются слуховыми рецепторами улитки.

Рис.1 – Ушная раковина

Рис. 2 – Барабанная перепонка и ее опознавательные пункты

Среднее ухо находится внутри каменистой части височной кости, в ее пирамиде (рис. 3). К нему относится барабанная полость и слуховая (евстахиева) труба, соединяющая последнюю с полостью носоглотки.

Рис.3 – Среднее ухо

Барабанная полость объемом в 1 см³ имеет 6 стенок:

1) латеральная – образована барабанной перепонкой и костной пластиной наружного слухового прохода;

2) медиальная – прилежит к лабиринту;

3) верхняя – отделяет барабанную полость от полости черепа;

4) нижняя – обращена к основанию черепа по соседству яремной ямкой;

5) передняя – граничит с внутренней сонной артерией, в верхней части этой стенки находится внутреннее отверстие слуховой трубы;

6) задняя – отделяет барабанную полость от сосцевидного отростка.

В барабанной полости находятся три маленькие слуховые косточки, получившие по своему виду названия – молоточек, наковальня, стремечко.

Они покрыты слизистой, соединяются между собой двумя суставами, образуя подвижную цепь от барабанной перепонки до овального окна преддверия. Из косточек образуется цепь, подвижность которых постепенно уменьшается в направлении от молоточка к стремени, что предохраняет спиральный орган внутреннего уха от чрезмерных сотрясений и сильных звуков. Цепь косточек выполняет две функции: 1) костную проводимость звука; 2) механическую передачу звуковых колебаний к овальному окну преддверия. Последняя функция осуществляется благодаря двум маленьким мышцам в барабанной полости, которые регулируют движение цепи косточек и работают как антагонисты (рис.4).

Рис.4 - Внутренняя (лабиринтная) и задняя сосцевидная стенки правой барабанной полости

Мышца, оттягивающая рукоятку молоточка, напрягает барабанную перепонку (косточки смещаются внутрь и стремя вдавливается в окно преддверия) и мышца стременная, которая крепится к задней ножке стремени у головки, производящая обратное перемещение – в направлении от окна преддверия. В общем же функция мышц среднего уха многообразна:

1) поддержание нормального тонуса барабанной перепонки и цепи слуховых косточек;

2) защита внутреннего уха от чрезмерных звуковых раздражений;

3) аккомодация звукопроводящего аппарата к звукам различной силы и высоты.

В целом, основным принципом работы среднего уха является звукопроводимость от барабанной перепонки к овальному окну преддверия.

Слуховая (евстахиева) труба состоит из костной и хрящевой частей, соединяющихся между собой. Слизистая оболочка трубы покрыта мерцательным эпителием и содержит слизистые железы и лимфатические фолликулы, которые у глоточного устья скапливаются в большом количестве (трубная миндалина). Основная функция евстахиевой трубы соединять барабанную полость с полостью глотки, обеспечивая равновесие давления в них с атмосферным.


Похожая информация.


Слуховая сенсорная система человека воспринимает и различает огромный диапазон звуков. Их разнообразие и богатство служит для нас как источником информации о происходящих событиях окружающей действительности, так и важным фактором, влияющим на эмоциональное и психическое состояние нашего организма. В данной статье мы рассмотрим анатомию уха человека, а также особенности функционирования периферического отдела слухового анализатора.

Механизм различения звуковых колебаний

Ученые установили, что восприятие звука, который, по сути, является колебаниями воздуха в слуховом анализаторе, трансформируется в процесс возбуждения. Ответственной за ощущение звуковых раздражителей в слуховом анализаторе является периферическая его часть, содержащая рецепторы и входящая в состав уха. Она воспринимает амплитуду колебаний, называемую звуковым давлением, в интервале от 16 Гц до 20 кГц. В нашем организме слуховой анализатор выполняет еще и такую важнейшую роль, как участие в работе системы, ответственной за развитие членораздельной речи и всей психоэмоциональной сферы. Вначале ознакомимся с общим планом строения органа слуха.

Отделы периферической части слухового анализатора

Анатомия уха выделяет три структуры, называемые наружным, средним и внутренним ухом. Каждая из них выполняет специфические функции, не только взаимосвязанные между собой, но и все вместе осуществляющие процессы приема звуковых сигналов, их преобразования в нервные импульсы. По слуховым нервам они передаются в височную долю коры головного мозга, где происходит трансформация звуковых волн в форму разнообразных звуков: музыку, пение птиц, шум морского прибоя. В процессе филогенеза биологического вида "Человек разумный" орган слуха сыграл важнейшую роль, так как обеспечил проявление такого феномена, как человеческая речь. Отделы органа слуха сформировались в ходе эмбрионального развития человека из наружного зародышевого листка - эктодермы.

Наружное ухо

Эта часть периферического отдела улавливает и направляет колебания воздуха к барабанной перепонке. Анатомия наружного уха представлена хрящевой раковиной и наружным слуховым проходом. Как это выглядит? Внешняя форма ушной раковины имеет характерные изгибы - завитки, и сильно отличается у разных людей. На одном из них может находиться Дарвинов бугорок. Он считается рудиментарным органом, и по происхождению гомологичен заостренному верхнему краю уха млекопитающих, особенно приматов. Нижняя часть называется мочкой и представляет собой соединительную ткань, покрытую кожей.

Слуховой проход - структура наружного уха

Далее. Слуховой проход - это трубка, состоящая из хрящевой и частично из костной ткани. Она покрыта эпителием, содержащим видоизмененные потовые железы, выделяющие серу, которая увлажняет и обеззараживает полость прохода. Мышцы ушной раковины у большинства людей атрофированы, в отличие от млекопитающих, чьи уши активно реагируют на внешние звуковые раздражители. Патологии нарушения анатомии строения уха фиксируются в ранний период развития жаберных дуг человеческого эмбриона и могут иметь вид расщепления мочки, сужения наружного слухового прохода или агенезии - полного отсутствия ушной раковины.

Полость среднего уха

Слуховой проход заканчивается эластичной пленкой, отделяющей наружное ухо от средней его части. Это - барабанная перепонка. Она принимает звуковые волны и начинает колебаться, что вызывает аналогичные движения слуховых косточек - молоточка, наковальни и стремечка, расположенных в среднем ухе, в глубине височной кости. Молоточек своей рукояткой присоединен к барабанной перепонке, а головкой связан с наковальней. Она, в свою очередь, своим длинным концом смыкается со стремечком, а оно прикрепляется к окошку преддверия, за которым находится внутреннее ухо. Все очень просто. Анатомия ушей выявила, что к длинному отростку молоточка присоединяется мышца, уменьшающая натяжение барабанной перепонки. А к короткой части этой слуховой косточки прикрепляется так называемый "антагонист". Особая мышца.

Евстахиева труба

С глоткой среднее ухо соединяется посредством канала, названного в честь ученого, описавшего его строение, - Бартоломео Эустахио. Труба служит приспособлением, выравнивающим давление атмосферного воздуха на барабанную перепонку с двух сторон: от наружного слухового прохода и полости среднего уха. Это необходимо для того, чтобы колебания барабанной перепонки без искажений передавались жидкости перепончатого лабиринта внутреннего уха. Евстахиева труба неоднородна по своему гистологическому строению. Анатомия ушей выявила, что она содержит не только костную часть. Также и хрящевую. Опускаясь вниз от полости среднего уха, труба заканчивается глоточным отверстием, располагающимся на латеральной поверхности носоглотки. Во время глотания мышечные фибриллы, прикрепленные к хрящевому отделу трубы, сокращаются, ее просвет расширяется, и порция воздуха входит в барабанную полость. Давление на перепонку в этот момент становится одинаковым с обеих ее сторон. Вокруг глоточного отверстия находится участок лимфоидной ткани, образующий узлы. Он называется миндалиной Герлаха и входит в состав иммунной системы.

Особенности анатомии внутреннего уха

Эта часть периферического отдела слуховой сенсорной системы расположена в глубине височной кости. Она состоит из полукружных каналов, относящихся к органу равновесия и костного лабиринта. Последняя структура содержит улитку, внутри которой расположен кортиев орган, являющийся звуковоспринимающей системой. По ходу спирали улитка разделена тонкой вестибулярной пластинкой и более плотной основной мембраной. Обе перепонки разделяют улитку на каналы: нижний, средний и верхний. У ее широкого основания верхний канал начинается овальным окном, а нижний закрыт круглым окном. Оба они заполнены жидким содержимым - перилимфой. Ее считают видоизмененным ликвором - веществом, заполняющим спинномозговой канал. Эндолимфа - еще одна жидкость, заполняющая каналы улитки и скапливающаяся в полости, где расположены нервные окончания органа равновесия. Продолжим изучать анатомию ушей и рассмотрим те части слухового анализатора, которые отвечают за перекодировку звуковых колебаний в процесс возбуждения.

Значение кортиева органа

Внутри улитки находится перепончатая стенка, называемая основной мембраной, на которой располагается скопление клеток двух типов. Одни выполняют функцию опоры, другие являются сенсорными - волосковыми. Они воспринимают колебания перилимфы, преобразуют их в нервные импульсы и передают далее чувствительным волокнам преддверноулиткового (слухового) нерва. Далее возбуждение достигает коркового центра слуха, находящегося в височной доле головного мозга. В ней происходит различение звуковых сигналов. Клиническая анатомия уха подтверждает тот факт, что для определения направления звука важно то, что мы слышим двумя ушами. Если звуковые колебания достигают их одновременно, человек воспринимает звук спереди и сзади. А если волны придут в одно ухо раньше, чем в другое, то восприятие происходит справа или слева.

Теории звукового восприятия

На сегодняшний момент нет единого мнения о том, как именно функционирует система, анализирующая звуковые вибрации и переводящая их в форму звуковых образов. Анатомия строения уха человека выделяет следующие научные представления. Например, резонансная теория Гельмгольца утверждает, что основная мембрана улитки функционирует как резонатор и способна раскладывать сложные колебания на более простые компоненты, так как ее ширина неодинакова на верхушке и у основания. Поэтому при появлении звуков происходит резонанс, как в струнном инструменте - арфе или рояле.

Другая теория объясняет процесс появления звуков тем, что в жидкости улитки возникает бегущая волна как ответ на колебания эндолимфы. Вибрирующие волокна основной мембраны входят в резонанс с конкретной частотой колебаний, в волосковых клетках возникают нервные импульсы. Они поступают по слуховым нервам в височную часть коры головного мозга, где и происходит конечный анализ звуков. Все предельно просто. Обе эти теории звукового восприятия базируются на знаниях анатомии уха человека.

Анатомически ухо делится на

ü наружное ухо,

ü систему среднего уха

ü внутреннее ухо - лабиринт, в котором различают улитку, преддверие и полукружные каналы.

Улитка, наружное и среднее ухо представляют собой орган слуха, в состав которого входит не только рецепторный аппарат (кортиев орган), но и сложная звукопроводящая система, предназначенная для доставки звуковых колебаний к рецептору.

Наружное ухо

Наружное ухо состоит из ушной раковины и наружного слухового прохода.

Ушная раковина имеет сложную конфигурацию и разделяется на два отдела: мочку, представляющую собой дупликатуру кожи с жировой тканью внутри, и часть, состоящую из хряща, покрытую тонкой кожей. Ушная раковина имеет завиток, противозавиток, козелок, противокозелок. Козелок прикрывает вход в наружный слуховой проход. Надавливание на область козелка бывает болезненным при воспалительном процессе в наружном слуховом проходе, а у детейипри остром среднем отите, так как в раннем детском возрасте (до 3-4 лет) наружный слуховой проход не имеет костного отдела и поэтому бывает короче.

Ушная раковина, воронкообразно суживаясь, переходит в наружный слуховой проход.

Хрящевой отдел наружного слухового прохода, состоящий частично из хрящевой ткани, снизу граничит с капсулой околоушной слюнной железы. Нижняя стенка имеет в хрящевой ткани несколько поперечно идущих щелей. Через них воспалительный процесс может распространяться на околоушную железу.

В хрящевом отделе имеется много желез, продуцирующих ушную серу. Здесь также расположены волосы с волосяными луковицами, которые могут воспаляться при проникновении патогенной флоры и вызывать образование фурункула.

Передняя стенка наружного слухового прохода тесно граничит с височно-нижнечелюстным суставом и при каждом жевательном движении происходит перемещение этой стенки. В случаях, когда на этой стенке развивается фурункул, каждое жевательное движение усиливает боль.

Костный отдел наружного слухового прохода выстлан тонкой кожей, на границе с хрящевым отделом имеется сужение.

Верхняя стенка костного отдела граничит со средней черепной ямкой, задняя - с сосцевидным отростком.

Среднее ухо

Среднее ухо состоит из трех частей: слуховая труба, барабанная полость, система воздухоносных полостей сосцевидного отростка. Все эти полости выстланы единой слизистой оболочкой.

Барабанная перепонка является частью среднего уха, ее слизистая оболочка едина со слизистой оболочкой прочих отделов среднего уха. Барабанная перепонка представляет собой тонкую мембрану, состоящую из двух частей: большая - натянутая и меньшая-ненатянутая. Натянутая часть состоит из трех слоев: наружного эпидермального, внутреннего (слизистая оболочка среднего уха), срединного фиброзного, состоящего из волокон, идущих радиально и циркулярно, тесно переплетающихся между собой.


Ненатянутая часть состоит только из двух слоев - в ней отсутствует фиброзная прослойка.

В норме перепонка серовато-голубоватой окраски и несколько втянута по направлению к барабанной полости, в связи с чем в центре ее определяется углубление, носящее название «пупок». Направленный в наружный слуховой проход пучок света, отражаясь от барабанной перепонки, дает световой блик - световой конус, который при нормальном состоянии барабанной перепонки всегда занимает одно положение. Этот световой конус имеет диагностическое значение. Кроме него, на барабанной перепонке необходимо различать рукоятку молоточка, идущую спереди назад и сверху вниз. Угол, образованный рукояткой молоточка и световым конусом, открыт кпереди. В верхнем отделе рукоятки молоточка виден небольшой выступ - короткий отросток молоточка, от которого вперед и кзади идут молоточковые складки (передняя и задняя), отделяющие натянутую часть перепонки от ненатянутой. Перепонка делится на 4 квадранта: передне-верхний, передненижний, задневерхний и задненижний.

Барабанная полость - центральный отдел среднего уха, имеет довольно сложное строение и объем около 1 см 3 . Полость имеет шесть стенок.

Слуховая труба (евстахиева труба) у взрослого человека имеет длину около 3,5 см и состоит из двух отделов - костного и хрящевого. Глоточное отверстие слуховой трубы открывается на боковой стенке носоглотки на уровне задних концов носовых раковин. Полость трубы выстлана слизистой оболочкой с мерцательным эпителием. Его реснички мерцают по направлению к носовой части глотки и тем самым предотвращают инфицирование полости среднего уха микрофлорой, постоянно там присутствующей. Кроме того, мерцательный эпителий обеспечивает и дренажную функцию трубы. Просвет трубы открывается при глотательных движениях, и воздух поступает в среднее ухо. При этом происходит выравнивание давления между наружной средой и полостями среднего уха, что очень важно для нормального функционирования органа слуха. У детей до двух лет слуховая труба короче и шире, чем в более старшем возрасте.

Сосцевидный отросток

Система клеток сосцевидного отростка бывает разнообразной в зависимости от степени развития воздухоносных клеток. Выделяют разные типы строения сосцевидных отростков:

§ пневматический,

§ склеротический,

§ диплоэтический.

Пещера (антрум) - большая клетка, непосредственно сообщающаяся с барабанной полостью. Проекция пещеры на поверхность височной кости находится в пределах треугольника Шипо. Слизистая оболочка среднего уха является мукопериостом, и практически не содержит желез.

Внутреннее ухо

Внутреннее ухо представлено костным и перепончатым лабиринтом и расположено в височной кости. Пространство между костным и перепончатым лабиринтом заполнено перилимфой (видоизмененная спинномозговая жидкость), перепончатый лабиринт заполнен эндолимфой. Лабиринт состоит из трех отделов – преддверие, улитка, три полукружных канала.

Преддверие средняя часть лабиринта и соединяется с барабанной перепонкой через круглое и овальное окно. Овальное окно закрыто пластинкой стремени. В преддверии находится отолитовый аппарат, который выполняет вестибулярную функцию.

Улитка представляет спиральный канал, в котором расположен кортиев орган – это периферический отдел слухового анализатора.

Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях: горизонтальной, фронтальной, сагитальной. В расширенной части каналов (ампуле) расположены нервные клетки, которые вместе с отолитовым аппаратом представляют периферический отдел вестибулярного анализатора.

Физиология уха

В ухе расположены два важнейших анализатора – слуховой ивестибулярный. Каждый анализатор состоит из 3 частей: периферическая часть (это рецепторы, которые воспринимают определенные виды раздражения), нервные проводники и центральная часть (расположена в коре головного мозга и проводит анализ раздражения).

Слуховой анализатор – начинается от ушной раковины и заканчивается в височной доле полушария. Периферическая часть делится на два отдела – звукопроведение и звуковосприятие.

Звукопроводящий отдел – воздушный - это:

· ушная раковина - улавливает звуки

· наружный слуховой проход – препятствия снижают слух

· барабанная перепонка – колебания

· цепь слуховых косточек, пластинка стремени вставлено в окно преддверия

· перилимфа - колебания стремени вызывают колебания перилимфы и, двигаясь по завиткам улитки, она передает колебания на кортиев орган.

Есть еще костная проводимость , которая происходит за счет сосцевидного отростка и костей черепа, минуя среднее ухо.

Звуковоспринимающий отдел – это нервные клетки кортиевого органа. Звуковосприятие – это сложный процесс превращения энергии звуковых колебаний в нервный импульс и проведение к центрам коры головного мозга, где проходит анализ и осмысление полученных импульсов.

Вестибулярный анализатор обеспечивает координацию движений, равновесие тела и мышечный тонус. Прямолинейное движение вызывает смещение отолитового аппарата в преддверии, вращательное и угловое - приводит в движение эндолимфу в полукружных каналах и раздражение расположенных здесь нервных рецепторов. Далее импульсы поступают в мозжечок, передаются в спинной мозг и на опорно-двигательный аппарат. Периферическая часть вестибулярного анализатора расположена в полукружных каналах.

Ухо – парный орган, выполняющий функцию восприятия звуков, а также осуществляет контроль равновесия и обеспечивает ориентацию в пространстве. Располагается в височной области черепа, имеет вывод в виде наружных ушных раковин.

Строение уха включает в себя:

  • наружный;
  • средний;
  • внутренний отдел.

Взаимодействие всех отделов способствует передачи звуковых волн, переделанных в нейронный импульс и поступающих в мозг человека. Анатомия уха, анализ каждого из отделов, дает возможность описать полную картину строения слуховых органов.

Эта часть общей слуховой системы представляет собой ушную раковину и слуховой проход. Раковина в свою очередь состоит из жировой ткани и кожного покрова, функционал ее определяется приемом звуковых волн и последующей передачи к слуховому аппарату. Данная часть уха легко деформируется, именно поэтому необходимо максимально избегать любых грубых физических воздействий.

Передача звуков происходит с некоторым искажением, в зависимости от расположения источника звука (горизонтального или вертикально), это помогает лучше ориентироваться в окружающей обстановке. Следующим, за ушной раковиной, находится хрящ внешнего ушного прохода (средний размер 25-30 мм).


Схема строения наружного отдела

Для выведения пылевых и грязевых отложений строение имеет потовые и сальные железы. Связующим и промежуточным звеном между наружным и средним ухом выступает барабанная перепонка. Принцип действия перепонки состоит в улавливании звуков из наружного слухового прохода и превращение их в колебания определенной частоты. Преобразованные колебания переходят в область среднего уха.

Строение среднего уха

Отдел состоит из четырех частей – непосредственно барабанной перепонки и слуховых косточек, находящихся в ее области (молоточек, наковальня, стремя). Приведенные составляющие обеспечивают передачу звука в внутреннюю часть органов слуха. Слуховые косточки образуют сложную цепь, осуществляющую процесс передачи колебаний.


Схема строения среднего отдела

Строение уха среднего отделения также включает в себя евстахиеву трубку, соединяющую данный отдел с носоглоточной частью. Она необходима для нормализации разницы давлений внутри и снаружи перепонки. Если баланс не соблюден, возможно или разрыв перепонки.

Строение внутреннего уха

Главная составляющая – лабиринт – сложная конструкция по своей форме и выполняемым функциям. Лабиринт состоит из височной и костной части. Конструкция располагается таким образом, что височная часть находится внутри костной.


Схема внутреннего отдела

Внутренняя часть содержит слуховой орган под название улитка, а также вестибулярный аппарат (отвечающий за общее равновесие). Рассматриваемый отдел имеет еще несколько вспомогательных частей:

  • полукружные каналы;
  • маточку;
  • стремя в овальном окне;
  • круглое окно;
  • барабанную лестницу;
  • спиральный канал улитки;
  • мешочек;
  • лестницу преддверия.

Улитка – костный канал спирального типа, разделяется на две одинаковых части перегородкой. Перегородка в свою очередь разделяется лестницами, соединяющимися сверху. Главная мембрана состоит из тканей и волокон, каждое из которых реагирует на определенный звук. В состав мембраны входит аппарат для восприятия звука – кортиев орган.

Рассмотрев конструкцию органов слуха, можно сделать вывод, что все подразделения связаны в основном со звукопроводящей и звуковоспринимающей частями. Для нормального функционирования ушей необходимо соблюдать правила личной гигиены, избегать простудных заболеваний и травм.

22744 0

Поперечный разрез периферического отдела слуховой системы подразделяется на наружное, среднее и внутреннее ухо.

Наружное ухо

Наружное ухо состоит из двух основных компонентов: ушной раковины и наружного слухового прохода. Оно выполняет различные функции. Прежде всего, длинный (2,5 см) и узкий (5-7 мм) наружный слуховой проход выполняет защитную функцию.

Во-вторых, наружное ухо (ушная раковина и наружный слуховой проход) имеют собственную резонансную частоту. Так, наружный слуховой проход у взрослых имеет резонансную частоту, равную приблизительно 2500 Гц, в то время как ушная раковина - равную 5000 Гц. Это обеспечивает усиление поступающих звуков каждой из этих структур на их резонансной частоте до 10-12 дБ. Усиление или увеличение в уровне звукового давления за счет наружного уха может быть продемонстрировано гипотетически экспериментом.

Используя два миниатюрных микрофона, при расположении одного у ушной раковины, а другого - у барабанной перепонки, можно определить этот эффект. При предъявлении чистых тонов различной частоты интенсивностью, равной 70 дБ УЗД (при измерении микрофоном, расположенным у ушной раковины), на уровне барабанной перепонки будут определены уровни.

Так, на частотах ниже 1400 Гц у барабанной перепонки определяется УЗД, равный 73 дБ. Эта величина лишь на 3 дБ выше уровня, измеряемого у ушной раковины. При повышении частоты эффект усиления значительно увеличивается и достигает максимальной величины, равной 17 дБ, на частоте 2500 Гц. Функция отражает роль наружного уха в качестве резонатора или усилителя высокочастотных звуков.

Расчетные изменения звукового давления, создаваемого источником, расположенным в свободном звуковом поле, в месте измерения: ушная раковина, наружный слуховой проход, барабанная перепонка (результирующая кривая) (по Shaw, 1974)


Резонанс наружного уха был определен при расположении источника звука непосредственно перед исследуемым на уровне глаз. При поднимании источника звука над головой завал на частоте 10 кГц смещается в сторону высоких частот, а пик кривой резонанса расширяется и перекрывает больший частотный диапазон. При этом каждая линия отображает различные утлы смещения источника звука. Таким образом, наружное ухо обеспечивает "кодирование" смещения объекта в вертикальной плоскости, выраженное в амплитуде спектра звука и, особенно, на частотах выше 3000 Гц.


Кроме того, четко продемонстрировано, что частотнозависимое повышение УЗД при измерении в свободном звуковом поле и у барабанной перепонки обусловлено в основном эффектами ушной раковины и наружного слухового прохода.

И, наконец, наружное ухо выполняет также локализационную функцию. Расположение ушной раковины обеспечивает наиболее эффективное восприятие звуков от источников, расположенных перед исследуемым. Ослабление же интенсивности звуков, исходящих от источника, расположенного позади испытуемого, и лежит в основе локализации. И, прежде всего, это относится к звукам высоких частот, имеющих короткие длины волн.

Таким образом, к основным функциям наружного уха относятся:
1. защитная;
2. усиление высокочастотных звуков;
3. определение смещения источника звука в вертикальной плоскости;
4. локализация источника звука.

Среднее ухо

Среднее ухо состоит из барабанной полости, клеток сосцевидного отростка, барабанной перепонки, слуховых косточек, слуховой трубы. У человека барабанная перепонка имеет коническую форму с эллиптическими контурами и площадью около 85 мм2 (лишь 55 мм2 из которых подвержены воздействию звуковой волны). Большая часть барабанной перепонки, pars tensa, состоит из радиальных и циркулярных коллагеновых волокон. При этом центральный фиброзный слой является наиболее важным в структурном отношении.

С помощью метода голографии было установлено, что барабанная перепонка колеблется не как единое целое. Ее колебания неравномерно распределены по ее площади. В частности, между частотами 600 и 1500 Гц имеются два выраженных участка максимального смещения (максимальной амплитуды) колебаний. Функциональное значение неравномерного распределения колебаний по поверхности барабанной перепонки продолжает изучаться.

Амплитуда колебаний барабанной перепонки при максимальной интенсивности звука по данным, полученным голографическим методом, равна 2x105 см, в то время как при пороговой интенсивности стимула она равна 104 см (измерения Дж. Бекеши). Колебательные движения барабанной перепонки достаточно сложны и неоднородны. Так, наибольшая амплитуда колебаний при стимуляции тоном частотой 2 кГц имеет место ниже umbo. При стимуляции низкочастотными звуками точка максимального смещения соответствует задневерхнему отделу барабанной перепонки. Характер колебательных движений усложняется при увеличении частоты и интенсивности звука.

Между барабанной перепонкой и внутренним ухом располагаются три косточки: молоточек, наковальня и стремя. Непосредственно с перепонкой соединяется рукоятка молоточка, в то время как головка его находится в контакте с наковальней. Длинный отросток наковальни, а, именно, его лентикулярный отросток, соединяется с головкой стремени. Стремя, самая маленькая косточка у человека, состоит из головки, двух ножек и подножной пластинки, располагающейся в окне преддверия и фиксирующейся в нем при помощи аннулярной связки.

Таким образом, непосредственная связь барабанной перепонки с внутренним ухом осуществляется через цепь трех слуховых косточек. К среднему уху относятся также две мышцы, располагающиеся в барабанной полости: мышца, натягивающая барабанную перепонку (т.tensor tympani) и имеющая длину до 25 мм, и стременная мышца (т.stapedius), длина которой не превышает 6 мм. Сухожилие стременной мышцы прикрепляется к головке стремени.

Отметим, что акустический стимул, достигнувший барабанной перепонки, может передаваться через среднее ухо к внутреннему уху тремя путями: (1) путем костного звукопроведения через кости черепа непосредственно к внутреннему уху, минуя среднее ухо; (2) через воздушное пространство среднего уха и (3) через цепь слуховых косточек. Как будет продемонстрировано ниже, наиболее эффективным является третий путь звукопроведения. Однако, обязательным условием при этом является уравнивание давления в барабанной полости с атмосферным, что и осуществляется при нормальном функционировании среднего уха через слуховую трубу.

У взрослых слуховая труба направлена книзу, что обеспечивает эвакуацию жидкостей из среднего уха в носоглотку. Таким образом, слуховая труба осуществляет две основные функции: во-первых, через нее выравнивается давление воздуха по обе стороны барабанной перепонки, что является обязательным условием для вибрации барабанной перепонки, и, во-вторых, слуховая труба обеспечивает дренажную функцию.

Выше указывалось, что звуковая энергия передается от барабанной перепонки через цепь слуховых косточек (подножную пластинку стремени) к внутреннему уху. Однако, если предположить, что звук передается непосредственно через воздух к жидкостям внутреннего уха, необходимо напомнить о большей величине сопротивления жидкостей внутреннего уха, по сравнению с воздухом. Каково же значение косточек?

Если представить себе двух людей, пытающихся общаться, когда один находится в воде, а другой на берегу, то следует иметь в виду, что порядка 99,9% звуковой энергии будут потеряны. Это означает, что около 99,9% энергии будут поражены и лишь 0,1% звуковой энергии достигнет жидкой среды. Отмеченная потеря соответствует снижению звуковой энергии приблизительно на 30 дБ. Возможные потери компенсируются средним ухом посредством двух следующих механизмов.

Как было отмечено выше, эффективной в плане передачи звуковой энергии является поверхность барабанной перепонки, площадью в 55 мм2. Площадь же подножной пластинки стремени, находящейся в непосредственном контакте с внутренним ухом, составляет около 3,2 мм2. Давление может быть определено как сила, приложенная к единице площади. И, если сила приложенная к барабанной перепонке, равна силе, достигающей подножной пластинки стремени, то давление у подножной пластинки стремени будет больше звукового давления, измеренного у барабанной перепонки.

Это означает, что различие в площадях барабанной перепонки к подножной пластинки стремени обеспечивает усиление давления, измеренного у подножной пластинки, в 17 раз (55/3,2), что в децибелах соответствует 24,6 дБ. Таким образом, если при непосредственной передаче из воздушной среды в жидкостную теряются около 30 дБ, то благодаря различиям в площадях поверхности барабанной перепонки и подножной пластинки стремени отмеченная потеря компенсируется на 25 дБ.

Передаточная функция среднего уха, демонстрирующая увеличение давления в жидкостях внутреннего уха, по сравнению с давлением на барабанную перепонку, на различных частотах, выраженная в дБ (по von Nedzelnitsky, 1980)


Передача энергии от барабанной перепонки к подножной пластинке стремени зависит от функционирования слуховых косточек. Косточки действуют подобно рычажной системе, что, прежде всего, определяется тем, что длина головки и шейки молоточка больше длины длинного отростка наковальни. Эффект же рычажной системы косточек соответствует 1,3. Дополнительное усиление энергии, поступающей к подножной пластинке стремени, обусловливается конической формой барабанной перепонки, что при ее вибрации сопровождается увеличением усилий, приложенных к молоточку, в 2 раза.

Все изложенное выше свидетельствует о том, что энергия, приложенная к барабанной перепонке, при достижении подножной пластинки стремени усиливается в 17x1,3x2=44,2 раза, что соответствует 33 дБ. Однако, безусловно, усиление, имеющее место между барабанной перепонкой и подножной пластинкой, зависит от частоты стимуляции. Так, следует, что на частоте 2500 Гц увеличение давления соответствует 30 дБ и выше. Выше этой частоты коэффициент усиления уменьшается. Кроме того, следует подчеркнуть, что отмеченные выше резонансный диапазон раковины и наружного слухового прохода обусловливают достоверное усиление в широком частотном диапазоне, что весьма существенно для восприятия звуков, подобных речи.

Неотъемлемой частью рычажной системы среднего уха (цепи слуховых косточек) являются мышцы среднего уха, которые, обычно находятся в состоянии натяжения. Однако при предъявлении звука интенсивностью в 80 дБ по отношению к порогу слуховой чувствительности (ПЧ) происходит рефлекторное сокращение стременной мышцы. При этом звуковая энергия, передаваемая через цепь слуховых косточек, ослабляется. Величина этого ослабления составляет 0,6-0,7 дБ на каждый децибел увеличения интенсивности стимула над порогом акустического рефлекса (около 80 дБ ПЧ).

Ослабление составляет от 10 до 30 дБ для громких звуков и более выражено на частотах ниже 2 кГц, т.е. имеет частотную зависимость. Время рефлекторного сокращения (латентный период рефлекса) колеблется от минимальных значений, равных 10 мс, при предъявлении высокоинтенсивных звуков, до 150 мс - при стимуляции звуками относительно низкой интенсивности.

Другой функцией мышц среднего уха является ограничение искажений (нелинейностей). Это обеспечивается как наличием эластических связок слуховых косточек, так и непосредственным сокращением мышц. С анатомических позиций интересно отметить, что мышцы располагаются в узких костных каналах. Это предотвращает вибрацию мышц при стимуляции. В противном случае имели бы место гармонические искажения, которые передавались бы к внутреннему уху.

Движения слуховых косточек неодинаковы на различных частотах и уровнях интенсивности стимуляции. Благодаря размерам головки молоточка и тела наковальни их масса равномерно распределена вдоль оси, проходящей через две большие связки молоточка и короткого отростка наковальни. На средних уровнях интенсивности цепь слуховых косточек движется таким образом, что подножная пластинка стремени совершает колебания вокруг оси, мысленно проведенной вертикально через заднюю ножку стремени, подобно дверям. Передняя часть подножной пластинки входит и выходит из улитки подобно пистону.

Подобные движения возможны благодаря асимметричной длине аннулярной связки стремени. На очень низких частотах (ниже 150 Гц) и на очень высоких интенсивностях характер вращательных движений резко изменяется. Так новая ось вращения становится перпендикулярной отмеченной выше вертикальной оси.

Движения стремени приобретают качательный характер: оно колеблется подобно детским качелям. Это выражается тем, что когда одна половина подножной пластинки погружается в улитку, другая движется в противоположном направлении. В результате этого гасятся перемещения жидкостей внутреннего уха. На очень высоких уровнях интенсивности стимуляции и частотах, превышающих 150 Гц, подножная пластинка стремени осуществляет одновременно вращения вокруг обеих осей.

Благодаря столь сложным ротационным движениям дальнейшее повышение уровня стимуляции сопровождается лишь незначительными движениями жидкостей внутреннего уха. Именно эти сложные движения стремени и защищают внутреннее ухо от чрезмерной стимуляции. Однако в экспериментах на кошках было продемонстрировано, что стремя совершает пистонообразные движения при стимуляции низкими частотами даже при интенсивности 130 дБ УЗД. При 150 дБ УЗД добавляются вращательные движения. Однако, учитывая то, что мы сегодня имеем дело с тугоухостью, обусловленной воздействием производственного шума, можно заключить, что ухо человека не обладает истинно адекватными защитными механизмами.

При изложении основных свойств акустических сигналов в качестве существенной их характеристики был рассмотрен акустический импеданс. Физические свойства акустического сопротивления или импеданса проявляется в полной мере в функционировании среднего уха. Импеданс или акустическое сопротивление среднего уха складывается из компонентов, обусловленных жидкостями, косточками, мышцами и связками среднего уха. Составными частями его являются резистентность (истинное акустическое сопротивление) и реактивность (или реактивное акустическое сопротивление). Основным резистивным компонентом среднего уха является сопротивление, оказываемое жидкостями внутреннего уха подножной пластинке стремени.

Сопротивление, возникающее при смещении подвижных частей, также следует учитывать, однако величина его значительно меньше. Следует помнить, что резистивный компонент импеданса не зависит от частоты стимуляции, в отличие от реактивного компонента. Реактивность определяется двумя составляющими. Первая - это масса структур среднего уха. Она оказывает влияние, прежде всего на высокие частоты, что выражается в увеличении импеданса, обусловленного реактивностью массы при повышении частоты стимуляции. Вторая составляющая - свойства сокращения и растяжения мышц и связок среднего уха.

Когда мы говорим о том, что пружина легко растягивается, мы имеем в виду, что она податлива. Если же пружина растягивается с трудом, мы говорим о ее жесткости. Эти характеристики вносят наибольший вклад при низких частотах стимуляции (ниже 1 кГц). На средних частотах (1-2 кГц) оба реактивных компонента подавляют друг друга, и в импедансе среднего уха преобладает резистивный компонент.

Одним из способов измерения импеданса среднего уха является использование электроакустического моста. Если система среднего уха достаточно жестка, давление, в полости будет выше, чем при высокой податливости структур (когда звук абсорбируется барабанной перепонкой). Таким образом, звуковое давление, измеренное при помощи микрофона, может быть использовано для изучения свойств среднего уха. Часто импеданс среднего уха, измеренный при помощи электроакустического моста, выражается в единицах податливости. Это объясняется тем, что импеданс, как правило, измеряется на низких частотах (220 Гц), и в большинстве случаев измеряются лишь свойства сокращения и растяжения мышц и связок среднего уха. Итак, чем выше податливость, тем меньше импеданс и тем легче работает система.

При сокращении мышц среднего уха вся система становится менее податливой (т.е. более жесткой). С эволюционных позиций нет ничего странного в том, что при выходе из воды на сушу для нивелирования различий в сопротивлении жидкостей и структур внутреннего уха и воздушных полостей среднего уха эволюция предусмотрела передаточное звено, а именно цепь слуховых косточек. Однако, какими же путями передается звуковая энергия к внутреннему уху при отсутствии слуховых косточек?

Прежде всего, внутреннее ухо стимулируется непосредственно вибрациями воздуха в полости среднего уха. И опять-таки, из-за больших различий в импедансе жидкостей и структур внутреннего уха и воздуха жидкости смещаются лишь незначительно. Кроме того, при непосредственной стимуляции внутреннего уха посредством изменений звукового давления в среднем ухе, имеет место дополнительное ослабление передаваемой энергии за счет того, что одновременно задействуются оба входа к внутреннему уху (окно преддверия и окно улитки), а на некоторых частотах звуковое давление передается также и в фазе.

Учитывая то, что окно улитки и окно преддверия расположены по разные стороны от основной мембраны, положительное давление, приложенное к мембране окна улитки, будет сопровождаться отклонением основной мембраны в одну сторону, а давление, приложенное к подножной пластинке стремени - отклонением основной мембраны в противоположную сторону. При приложении к обоим окнам одновременно одинакового давления основная мембрана не будет перемещаться, что само по себе исключает восприятие звуков.

Снижение слуха, равное 60 дБ, часто определяется у больных, у которых отсутствуют слуховые косточки. Таким образом, следующей функцией среднего уха является обеспечение пути передачи стимула к овальному окну преддверия, что, в свою очередь, обеспечивает смещения мембраны окна улитки, соответствующие колебаниям давления во внутреннем ухе.

Другим путем стимуляции внутреннего уха является костное проведение звука, при котором изменения акустического давления вызывают вибрации костей черепа (прежде всего височной кости), и эти вибрации передаются непосредственно к жидкостям внутреннего уха. Из-за колоссальных различий в импедансе костей и воздуха стимуляция внутреннего уха за счет костного проведения не может рассматриваться как важная составляющая часть нормального слухового восприятия. Однако, если источник вибраций прикладывается непосредственно к черепу, внутренне ухо стимулируется за счет проведения звуков через кости черепа.

Различия в импедансе костей и жидкостей внутреннего уха весьма незначительны, что способствует частичной передаче звука. Измерение слухового восприятия при костном проведении звуков имеет большое практическое значение при патологии среднего уха.

Внутреннее ухо

Прогресс в изучении анатомии внутреннего уха определился развитием методов микроскопии и, в частности, трансмиссионной и сканирующей электронной микроскопии.


Внутреннее ухо млекопитающих состоит из ряда мембранозных мешков и протоков (формирующих мембранозный лабиринт), заключенных в костную капсулу (костный лабиринт), расположенную, в свою очередь, в твердой височной кости. Костный лабиринт подразделяется на три основные части: полукружные каналы, преддверие и улитку. В двух первых образованиях расположена периферическая часть вестибулярного анализатора, в улитке же расположен периферический отдел слухового анализатора.

Улитка у человека имеет 2 3/4 завитка. Самый большой завиток - это основной завиток, самый маленький - верхушечный завиток. К структурам внутреннего уха также относятся овальное окно, в котором расположена подножная пластинка стремени, и круглое окно. Улитка слепо заканчивается в третьем завитке. Центральная ось ее называется модиолюсом.

Поперечный разрез улитки, из которого следует, что улитка подразделена на три отдела: лестницу преддверия, а также барабанную и срединную лестницы. Спиральный канал улитки имеет длину 35 мм и частично разделяется по всему длиннику тонкой костной спиральной пластинкой, отходящей от модиолюса (osseus spiralis lamina). Продолжает ее, основная мембрана (membrana basilaris) соединяющаяся с наружной костной стенкой улитки у спиральной связки, завершая тем самым разделение канала (за исключением небольшого отверстия у верхушки улитки, называемого helicotrema).

Лестница преддверия простирается от овального окна, расположенного в преддверии, до helicotrema. Барабанная лестница простирается от круглого окна и также до helicotrema. Спиральная связка, являясь соединяющим звеном между основной мембраной и костной стенкой улитки, поддерживает в то же время и сосудистую полоску. Большая часть спиральной связки состоит из редких фиброзных соединений, кровеносных сосудов и клеток соединительной ткани (фиброцитов). Зоны же, расположенные вблизи от спиральной связки и спирального выступа, включают больше клеточных структур, а также большие митохондрии. Спиральный выступ отделяется от эндолимфатического пространства слоем эпителиальных клеток.


От костной спиральной пластинки кверху в диагональном направлении отходит тонкая Рейсснерова мембрана, прикрепляемая к наружной стенке улитки несколько выше основной мембраны. Она простирается вдоль всего хтинника улитки и соединяется с основной мембраной у helicotrema. Таким образом, формируется улитковый ход (ductus cochlearis) или, срединная лестница, ограниченный сверху Рейсснеровой мембраной, снизу -основной мембраной, и снаружи - сосудистой полоской.

Сосудистая полоска - это основная сосудистая зона улитки. Она имеет три основных слоя: маргинальный слой темных клеток (хромофилы), средний слой светлых клеток (хромофобы), а также основной слой. В пределах этих слоев проходит сеть артериол. Поверхностный слой полоски формируется исключительно из больших маргинальных клеток, которые содержат множество митохондрий и ядра которых расположены вблизи к эндолимфатической поверхности.

Маргинальные клетки составляют основную часть сосудистой полоски. Они имеют пальцеобразные отростки, обеспечивающие тесную связь с аналогичными отростками клеток срединного слоя. Базальные клетки прикрепляются к спиральной связке имеют плоскую форму и длинные отростки, проникающие в маргинальный и срединный слои. Цитоплазма базальных клеток аналогична цитоплазме фиброцитов спиральной связки.

Кровоснабжение сосудистой полоски осуществляется спиральной модиолярной артерией через сосуды, проходящие через лестницу преддверия к латеральной стенке улитки. Собирающие венулы, расположенные в стенке барабанной лестницы, направляют кровь в спиральную модиолярную вену. Сосудистая полоска осуществляет основной метаболический контроль улитки.

Барабанная лестница и лестница преддверия содержат жидкость, называемую перилимфой, в то время как срединная лестница содержит эндолимфу. Ионный состав эндолимфы соответствует составу, определяемому внутри клетки, и характеризуется высоким содержанием калия и низкой концентрацией натрия. Например, у человека концентрация Na равна 16 мМ; К - 144,2 мМ; Сl -114 мэкв/л. Перилимфа, наоборот, содержит высокие концентрации натрия и низкие концентрации калия (у человека Na - 138 мМ, К- 10,7 мМ, Сl - 118,5 мэкв/л) что по составу соответствует экстрацеллюлярной или спинномозговой жидкостям. Поддержание отмеченных различий в ионном составе эндо- и перилимфы обеспечивается наличием в мембранозном лабиринте эпителиальных пластов, имеющих множество плотных, герметичных соединений.


Большая часть основной мембраны состоит из радиальных волокон диаметром 18-25 мкм, формирующих компактный однородный слой, заключенный в гомогенную основную субстанцию. Структура основной мембраны существенно отличается от основания улитки к верхушке. У основания - волокна и покровный слой (со стороны барабанной лестницы) расположены более часто, по сравнению с верхушкой. Кроме того, в то время как костная капсула улитки уменьшается по направлению к верхушке, основная мембрана при этом расширяется.

Так у основания улитки основная мембрана имеет ширину 0,16 мм, в то время как у helicotrema ширина ее достигает 0,52 мм. Отмеченный структурный фактор лежит в основе градиента жесткости вдоль длинника улитки, определяющий распространение бегущей волны и способствующий пассивной механической настройке основной мембраны.


Поперечные разрезы органа Корти у основания (а) и верхушки (б) свидетельствуют о различиях в ширине и толщине основной мембраны, (в) и (г) - сканирующие электронные микрофотограммы основной мембраны (вид со стороны барабанной лестницы) у основания и верхушки улитки (д). Суммарные физические характеристики основной мембраны человека


Измерение различных характеристик основной мембраны легло в основу модели мембраны, предложенной Бекеши, описавшего в своей гипотезе слухового восприятия сложный паттерн ее движений. Из его гипотезы следует, что основная мембрана человека представляет собой толстый слой плотно расположенных волокон длиной порядка 34 мм, направленных от основания к helicotrema. Основная мембрана у верхушки шире, более мягкая и без какого-либо натяжения. Базальный конец ее уже, более жесткий, чем апикальный, может находиться в состоянии некоторого натяжения. Перечисленные факты представляют определенный интерес при рассмотрении вибраторных характеристик мембраны в ответ на акустическую стимуляцию.



ВВК- внутренние волосковые клетки; НВК - наружные волосковые клетки; НСК, ВСК - наружные и внутренние столбовые клетки; ТК - туннель Корти; ОС - основная мембрана; ТС - тимпанальный слой клеток ниже основной мембраны; Д, Г - опорные клетки Дейтерса и Гензена; ПМ - покровная мембрана; ПГ - полоска Гензена; КВБ - клетки внутренней бороздки; РВТ-радиальное нервное волокно туннеля


Таким образом, градиент жесткости основной мембраны обусловлен различиями в ширине ее, которая увеличивается по направлению к верхушке, толщине, которая уменьшается по направлению к верхушке, и анатомическим строением мембраны. Справа представлена базальная часть мембраны, слева -верхушечная. На сканирующих электронномикрограммах продемонстрирована структура основной мембраны со стороны барабанной лестницы. Четко определяются отличия в толщине и частоте расположения радиальных волокон между основанием и верхушкой.

В срединной лестнице на основной мембране расположен орган Корти. Наружные и внутренние столбовые клетки формируют внутренний туннель Корти, заполненный жидкостью, называемой кортилимфой. Кнутри от внутренних столбов располагается один ряд внутренних волосковых клеток (ВВК), а кнаружи от наружных столбов - три ряда клеток меньшего размера, называемых наружными волосковыми клетками (НВК), и опорные клетки.

,
иллюстрирующая опорную структуру органа Корти, состоящую из клеток Дейтерса (д) и их фалангеальных отростков (ФО) (опорная система наружного третьего ряда НВК (НВКЗ)). Фалангеальные отростки, отходящие от верхушки клеток Дейтерса, формируют часть ретикулярной пластинки у верхушки волосковых клеток. Стереоцилии (Сц) располагаются над ретикулярной пластинкой (по I.Hunter-Duvar)


Клетки Дейтерса и Гензена поддерживают НВК сбоку; аналогичную функцию, но по отношению к ВВК, выполняют пограничные клетки внутренней бороздки. Второй тип фиксации волосковых клеток осуществляется ретикулярной пластинкой, которая удерживает верхние концы волосковых клеток, обеспечивая их ориентацию. Наконец, третий тип осуществляется также клетками Дейтерса, но расположенными ниже волосковых клеток: одна клетка Дейтерса приходится на одну волосковую клетку.

Верхний конец цилиндрической клетки Дейтерса имеет чашеобразную поверхность, на которой и располагается волосковая клетка. От этой же поверхности отходит к поверхности органа Корти тонкий отросток, формирующий фалангеальный отросток и часть ретикулярной пластинки. Эти клетки Дейтерса и фалангеальные отростки и формируют основной вертикальный опорный механизм для волосковых клеток.

А. Трансмиссионная электрономикрофотограмма ВВК. Стереоцилии (Сц) ВВК проецируются в срединную лестницу (СЛ), а их основание погружено в кутикулярную пластинку (КП). Н - ядро ВВК, ВСП - нервные волокна внутреннего спирального узла; ВСК, НСК - внутренние и наружные столбовые клетки туннеля Корти (ТК); НО - нервные окончания; ОМ - основная мембрана
Б. Трансмиссионная электрономикрофотограмма НВК. Определяется четкое различие в форме НВК и ВВК. НВК располагается на углубленной поверхности клетки Дейтерса (Д). У основания НВК определяются эфферентные нервные волокна (Э). Пространство между НВК называется Нуэлевым пространством (НП) В пределах его определяются фалангеальные отростки (ФО)


Форма НВК и ВВК существенно отличается. Верхняя поверхность каждой ВВК покрыта кутикулярной мембраной, в которую погружены стереоцилии. Каждая ВВК имеет около 40 волосков, выстроенных в два или более рядов U-образной формы.

Свободным от кутикулярной пластинки остается лишь небольшой участок поверхности клетки, где и располагается базальное тело или измененная киноцилия. Базальное тело расположено у наружного края ВВК, в удалении от модиолюса.

Верхняя поверхность НВК содержит около 150 стереоцилий, расположенных в трех или более рядах V- или W-образной формы на каждой НВК.


Четко определяются один ряд ВВК и три ряда НВК. Между НВК и ВВК видны головки внутренних столбовых клеток (ВСК). Между верхушками рядов НВК определяются верхушки фалангеальных отростков (ФО). Опорные клетки Дейтерса (Д) и Гензена (Г) располагаются у наружного края. W-образная ориентация ресничек НВК наклонена по отношению к ВВК. При этом наклон различен для каждого ряда НВК (по I.Hunter-Duvar)


Верхушки самых длинных волосков НВК (в ряду, удаленном от модиолюса) находятся в контакте с гелеобразной покровной мембраной, которая может быть описана как бесклеточный матрикс, состоящий из золокон, фибрилл и гомогенной субстанции. Она простирается от спирального выступа к наружному краю ретикулярной пластинки. Толщина покровной мембраны увеличивается от основания улитки к верхушке.

Основная часть мембраны состоит из волокон диаметром 10-13 нм, исходящих от внутренней зоны и идущих под углом 30° к верхушечному завитку улитки. По направлению к наружным краям покровной мембраны волокна распространяются в продольном направлении. Средняя длина стереоцилий зависит от положения НВК вдоль длинника улитки. Так, у верхушки их длина достигает 8 мкм, в то время как у основания - не превышает 2 мкм.

Количество же стереоцилий уменьшается по направлению от основания к верхушке. Каждая стереоцилия имеет форму булавы, которая расширяется от основания (у кутикулярной пластинки - 130 нм) к верхушке (320 нм). Между стереоцилиями существует мощная сеть перекрестов, таким образом, большое количество горизонтальных соединений связывают стереоцилии, расположенные как в одном и том же, так и в разных рядах НВК (латерально и ниже верхушки). Кроме того, от верхушки более короткой стереоцилии НВК отходит тонкий отросток, соединяющийся с более длинной стереоцилией следующего ряда НВК.


ПС - перекрестные соединения; КП - кутикулярная пластинка; С - соединение в пределах ряда; К - корень; Сц - стереоцилия; ПМ - покровная мембрана


Каждая стереоцилия покрыта тонкой плазматической мембраной, под которой расположен цилиндрический конус, содержащий длинные волокна, направленные вдоль длинника волоска. Эти волокна состоят из актина и других структурных протеинов, находящихся в кристаллообразном состоянии и придающих ригидность стереоцилиям.

Я.А. Альтман, Г. А. Таварткиладзе