Вчера беседовали с товарищем о том, почему даже самые современные лекарства помогают лишь части пациентов, которым они показаны, и почему степень терапевтического эффекта у разных пациентов неодинаковая.

Помню, был такой анекдот (бородатый, наверное) , что, дескать, в военно-полевых условиях все заболевания делятся на две категории: «само пройдет» и «лечить бесполезно». В этой шутке только доля шутки, потому что относительно недавно именно так и выглядели возможности медицины. В статье я показывал приблизительную диаграмму эффективности лекарств, в зависимости от их класса.

Прорывом в возможностях стало появление антибиотиков, которые впервые сделали многие тяжелые заболевания излечимыми. Но в отношении других болезней с хронически-прогрессирующим или рецидивирующим-ремитирующим течением особого успеха не было очень долго. Перелом произошел в конце 20 века, когда накопленные знания о молекулярных и клеточных механизмах заболеваний встретились с новыми техническими возможностями создания лекарств.

Появились препараты, которые действуют на определенные мишени заболевания: рецепторы на клетках, растворимые в крови и тканевой жидкости цитокины и медиаторы, и так далее. Если, например, первые конвенциональные препараты химиотерапии действовали на все активно-делящиеся клетки, в том числе и здоровые, то новые - только на те, на которых есть определенная, характерная для заболевания мишень.

Такие препараты сразу назвали красивым термином «таргетные лекарства» и возложили на них большие надежды, однако, прошло время, и стало понятно, что их эффект ограничен. Эти лекарства помогают не всем и не одинаково.

Вот, например, в группе воспалительных заболеваний кишечника (ВЗК) моноклональные антитела против мощного провоспалительного цитокина TNFα, роль которого в патогенезе ВЗК доказана, обладают лишь ограниченной эффективностью, помогая достичь длительной ремиссии только части пациентов. Еще часть пациентов в течение лечения сначала достигает ремиссии, а потом выходит из нее.

Почему так происходит, ведь TNFα вовлечен во все или во многие патологические процессы при ВЗК? Научные исследования продолжаются и постоянно докладывают в корзинку знаний что-то новое. Оказывается, не меньшее значение в патогенезе этих заболеваний имеет процесс перемещения T- и В-лимфоцитов из периферической крови в ткань кишки. Появились антитела против интегриновых молекул, нарушающие процессы этой миграции. Но увы, эффективность и этих лекарств тоже оказалась ограниченной.

Исследователи во всем мире уже осознали, что механизмы, регулирующие процессы в нашем организме, столь сложны и разнообразны, что создать «универсальное лекарство» невозможно, да и двух одинаковых пациентов тоже не бывает. Поэтому сейчас начинается новый виток эволюции клинических исследований и процесса разработки новых лекарств. Новая концепция называется персонализованная медицина , в ее основе лежит индивидуальное предсказание эффективности на основании детального изучения взаимосвязи ответа на лечение с личными молекулярно-генетическими особенностями человека.

Про принципы персонализованной медицины я уже говорил, а в этом посте я хотел проиллюстрировать многообразие механизмов заболеваний и их мишеней на примере относительно недавно открытого типа лимфоцитов.

Врожденная лимфоидная клетка

Вы слышали, наверняка, что иммунную систему человека принято делить на две под-системы: врожденный (или неспецифический) иммунитет и приобретенный (или специфический и адаптивный) .

Врожденный иммунитет - это совокупность эволюционно более древних клеток и механизмов, обладающих способностью мгновенно реагировать на угрозы - чужеродные организмы или изменения в собственных тканях. Реакция быстрая, но не адаптивная. То есть врожденный иммунитет не способен соревноваться со способностями микроорганизмов, вирусов и некоторых собственных клеток человека постоянно изменяться. Клетки и рецепторы врожденного иммунитета могут распознавать только консервативные, не склонные к быстрым эволюциям, конструкции. Поэтому, генетически гибкий организм эту защиту может обойти.

Клетки приобретенного иммунитета обладают уникальной способностью к адаптации. Она всякий раз требует времени для созревания, но зато позволяет с очень высокой различать меняющиеся чужеродные организмы, находить их и уничтожать.

Эта очень уютное разделение, но в значительной степени оно условно. Увы, Природе не до нашего удобства, и она не склонна к таким полярным градациям. Мы считали, что лимфоциты, обладающие феноменом соматической рекомбинации генов, кодирующих антиген-специфические рецепторы - это инструмент приобретенного иммунитета. Однако, недавно оказалось, что есть особый класс зрелых лимфоцитов, у которых нет антигенных рецепторов, зато есть большой арсенал продуцируемых цитокинов и масса разнообразных иммунных и регулирующих функций.

Этот класс лимфоцитов назвали Innate Lymphoid Cells ( ILCs) , то есть врожденные лимфоидные клетки (розовые клетки на заглавной картинке) . Класс новый, хотя его прототип, натуральные киллеры, известны еще с 1975 года. ILC, как и обычные лимфоциты, происходит от общего лимфоидного предшественника (CLP) , но по мере созревания и под воздействием факторов микроокружения, пути «обычных» лимфоцитов системы приобретенного иммунитета и ILC-клеток расходятся.

ILC составляют лишь очень небольшой процент от общего количества циркулирующих в крови лимфоцитов, но их роль в регулировании защиты организма от чужеродных микроорганизмов, в контроле воспаления и заживления и перестройки ткани оказались очень существенными.

В организме ILC рассредоточены преимущественно в барьерных тканях то есть там, где внешняя среда граничит с внутренней средой организма, например, в слизистых. Больше всего ILC в месте максимальной концентрации всех иммунокомпетентных клеток нашего организма - в лимфоидной ткани слизистой оболочки пищеварительного тракта.

Здесь, как полагают ученые, ILC отвечают за контроль нашего мирного сосуществования с населяющими слизистые ЖКТ бактериями «нормальной флоры». Мы их считаем нормальными по той простой причине, что за долгое время совместной эволюции и они, и мы адаптировались друг к другу так, что каждый вид получает от совместного проживания больше пользы, чем вреда.

Они защищают нас от инфекций и помогают пищеварению, мы даем им убежище и пищу, а также не убиваем их. Этот симбиоз достигается благодаря сохранению статуса кво . Например, симбионтам нельзя пересекать эпителиальный барьер, а также размножаться интенсивнее дозволенного. Этот запрет регулируется выработкой слизи, содержащей большое количество антимикробных веществ и секреторных форм иммуноглобулина А, плотностью эпителиального слоя и, дежурящими под ним, и лимфоцитами.

Чем заняты ILCs?

Сейчас эти клетки разделили на три класса, в зависимости от молекул на их мембранах, продуцируемых ими цитокинов и выполняемых функций. Классы названы просто: ILC1, ILC2 и ILC3.

Общим свойством всех врожденных лимфоидных клеток является то, что они очень быстро и мощно реагируют на сигналы, исходящие от эпителиальных клеток, антиген-презентирующих клеток и других ILC-клеток. В ответ на активацию они начинают продуцировать характерные для своего класса цитокины:

  • ILC1 специализируются на интерфероне-гамма и TNFα,
  • ILC2 синтезируют интерлейкины -4, -5, -9 и -13, а
  • ILC3 - преимущественно TNFα, интерлейкин-17а и интерлейкин-22.

У каждого класса этих клеток своя зона ответственности в рамках неспецифического (врожденного) иммунного ответа -

На фотографии слева токсоплазма внедряется в клетку, справа - токсоплазмы в ткани печени человека.

ILC3-клетки быстро отвечают на инфекцию грибами и внеклеточными бактериями , например, кишечными бактериями rodentium . В ответ на это ILC3 и при помощи дендритных клеток, они начинают продуцировать интерлейкин-22 и -17, необходимые для защиты ткани.

На фотографии Citrobacter rodentium

Интерлейкин-22 действует преимущественно на эпителиальные клетки и стимулирует в них продукцию антимикробных пептидов, слизи и других факторов защиты. Все эти факторы ограничивают размножение и распространение патогенных и оппортунистических бактерий, а также повреждение ткани. Интерлейкины-17 и -22 промотируют продукцию антимикробных пептидов и хемокинов, способствующих миграции нейтрофилов из крови в ткань.

Другие свойства ILC

Врожденные лимфоидные клетки помогают защищать ткань пищеварительного тракта от патогенных микроорганизмов и контролировать колонизацию слизистой симбиотическими бактериями. Если балансы сил сохранены, то контроль осуществляется без воспаления и незаметно для человека.

Однако, если в силу каких-то причин граница между внутренней и внешней средой дает брешь - возможен конфликт между иммунной системой и бактериями нормальной флоры. Если он произойдет, тогда в стенки кишки разовьется воспаление, и в нем помимо, клеток врожденного иммунитета, уже в полный рост будут принимать участие Т- и В-лимфоциты.

Обычно, такое случается при совпадении нескольких факторов: генетической предрасположенности, воздействий окружающей среды, изменения антигенного состава микробиоты пищеварительного тракта и нарушений толерантности иммунной системы к симбиотическим бактериям.

Синдромально такая комбинация проявляется воспалительными заболеваниями кишечника (ВЗК) . И вот тогда уже, врожденные лимфоидные клетки вместо того, чтобы поддерживать мир и кооперацию нашего организма с бактериями нормальной флоры, идут на них войной, вместе с другими иммунными клетками, в том числе и лимфоцитами системы приобретенного иммунитета.

Так как природа заболевания от этих сражений никуда не девается, то процесс принимает хронический характер. Когда разработчики лекарств придумывали моноклональные антитела против TNFα и интегриновых молекул, они еще не знали о том, какую роль в патогенезе ВКЗ играет новый класс лимфоцитов - ILC-клетки. Об их роли стало известно недавно, и сейчас идут исследования, которые принесут новые знания о регуляции и эффектах этих клеток. Тогда, вероятно, появятся новые лекарства.

Сейчас же очевидно, что создать препарат, который бы вмешался даже во все изученные патологические механизмы, невозможно - слишком уж они сложны, а пример с ILC-клетками, наглядно демонстрирует, насколько мы еще далеки от полного понимания механизмов, лежащих в основе заболеваний.

Пока у ученых, врачей и производителей лекарств нет никакого другого варианта, кроме, как подбирать наиболее универсальные и при этом наиболее специфические для заболевания мишени и пытаться действовать на них. При этом, всегда эффективность этих препаратов будет ограничена тремя факторами:

  1. невозможностью воздействовать на все механизмы сразу,
  2. нехваткой знаний о том, какие еще механизмы участвуют в заболевании и
  3. индивидуальными особенностями пациентов.

Однако, каждый новый препарат расширяет варианты выбора лечения, а принципы персонализованной медицины помогают подбирать препараты, наиболее подходящие для конкретного человека.

ILС-клетки, как мишень

По мере накопления знания об этом новом классе иммунных клеток, они наверняка превратятся в мишень для очередных таргетных препаратов. Уже сейчас в литературе обсуждаются варианты воздействия на их мембранные рецепторы. Так, например, показано, что Daclizumab , моноклональное антитело против CD25 (один из маркеров ILC) , меняет функции и количество этих клеток у пациентов с рассеянным склерозом.

Некоторые исследователи полагают, что популяция ILC-клеток может сама стать лекарством, если ученые научатся их перепрограммировать в условиях ex vivo, чтобы затем вновь ввести пациенту. Дело в том, что в одной из новых работ показано, что ILC-клетки презентируют Т-лимфоцитам пептидные фрагменты антигенов бактериального происхождения в комплексе с молекулами MHC II класса. Но, по причине того, что на мембране ILC-клеток нет ко-стимулирующих молекул, эта презентация носит толерогенный, а не активирующий характер. То есть ILC-клетки учат Т-лимфоциты «не трогать» симбиотическую флору.

В экспериментах на мышах, у которых был удален ген, кодирующий компонент молекулы MHC II в ILC3 клетках, было показано развитие процесса, напоминающего болезнь Крона. У этих животных было больше, чем обычно лимфоцитов, распознающих антигены бактерий нормальной флоры. Если удастся создать метод генетической модификации ILC-клеток пациентов так, чтобы усилить у них толерогенную функцию, то может появиться новый метод лечения пациентов с ВЗК.

Новые посты проще всего отслеживать по анонсам в наших пабликах

Клетки, принимающие участие в становлении и функционировании иммунной системы, можно разделить на две группы: первую представляют основные клетки лимфоидного комплекса -Т-, В-лимфоциты и их субпопуляции, вторая группа - вспомогательные клетки иммунной системы: макрофаги, дендритные клетки, В-клетки, представляющие антиген в форме, доступной для его распознавания основными клетками системы (антигенпрезентирующие клетки), и стромальные клеточные элементы органов, где происходят процессы созревания (дифференцировки) основных клеток иммунной системы.

Несколько в стороне стоят NK-клетки (нормальные киллерные клетки) - большие бластные, гранулярные лимфоциты. Функционально они не относятся к клеточным элементам специфического иммунитета, поскольку не имеют основного инструмента, который позволил бы им войти в категорию специфических клеточных факторов иммунитета, - антигенраспознающих рецепторов. Их участие в иммунном процессе - неспецифическое разрушение чужеродных клеток (некоторых опухолевых клеток, вирусинфицированных клеток, неродственных трансплантатов).

Основная помощь в делении лимфоцитов на отдельные типы (популяции) и субпопуляции пришла из анализа их поверхностных молекулярных структур (рецепторов, маркеров), определяемых с помощью моноклональных антител.
Поскольку в отдельно взятой молекуле образуется несколько таких антител, выявляющих отличающиеся антигенные детерминанты одной и той же молекулы, и, более того, в разных лабораториях идентичные антитела получили различные обозначения, решено было все обнаруженные антигенные специфичности одной молекулы объединить под общим названием CD-антигены с определенным порядковым номером. Свое обозначение они получили от английского словосочетания «cluster designation». К настоящему времени известно более 150 таких кластеров. Изучая динамику появления CD-антигенов, удалось не только четко разделить все лимфоциты на определенные популяции и субпопуляции, но и проследить процессы дифференцировки лимфоцитов, изменение поверхностных клеточных структур в результате выполнения той или иной функции и выявить предназначение самих CD-антигенов в процессах становления и развития клеточных участников иммунного ответа.

В-клетки
Как уже отмечалось, В-клетки - малые лимфоциты, проходят практически полностью весь путь своего развития в костном мозге.
После прошедших дифференцировок они покидают место основного развития и перемещаются в периферические лимфоидные органы, где заселяют так называемые В-зоны или Т-независимые зоны этих органов. Периферические В-лимфоциты, потенциально способные к выполнению своей защитной функции - синтезу антител, представляют собой сферические клетки диаметром 7 - 9 мкм, с узкой каймой цитоплазмы, гетерохроматиновым бобовидным или округлым ядром, заполняющим практически весь объем клетки. Цитоплазматическая мембрана характеризуется наличием небольших выростов - микроворсинок.

Созревание и функция В-клеток неразрывно связаны с экспрессией на их поверхности самых разнообразных поверхностных молекул, которые обеспечивают им взаимодействие как с другими клетками, так и с лигандами, что и лежит в основе «жизненного обеспечения» этого типа клеток. Особое внимание следует обратить на те поверхностные структуры, которые экспрессируются только на В-клетках. Это в первую очередь поверхностный, или мембранный, иммуноглобулин (slg, или mlg).
При наличии меченых антител к иммуноглобулину легко вычленить В-клетки из общей популяции лимфоцитов. На мембране клетки slg связан с другими молекулярными структурами, образуя В-клеточный антигенраспознающий рецепторный комплекс BCR (от англ. - В cell receptor). Среди них необходимо отметить CD79-a и -Ь, а также CD 19, CD20, CD21, CD81, Leul3. Другая группа антигенов CD характеризуется более широкой клеточной экспрессией. Эти молекулярные структуры встречаются не только на В-клетках и участвуют в таких общих с другими клетками лимфомиелоидного комплекса процессах, как обеспечение дифференцировки, миграции и рециркуляции, костимуляции, клеточного взаимодействия и др.

Т-клетки
Т-клетки практически неотличимы по своей морфологии от В-лимфоцитов. Единственное, подчас трудно уловимое различие касается микроворсинок плазматической мембраны, которые у данного типа клеток выражены несколько слабее по сравнению с В-клетками и напоминают скорее небольшие вздутия цитоплазмы, чем собственно ворсинки.
Как и в случае с В-клетками, единственный достоверный способ отличить Т-клетки от остальных лимфоцитов состоит в регистрации на их поверхности маркеров и в первую очередь тех, которые специфичны только для данного типа лимфоцитов. Среди них главным является Т-клеточный антигенраспознающий рецептор - TCR (от англ. - Т cell receptor), который совместно с дополнительными молекулярными структурами-корецепторами (CD3, CD4, CD8, CD45) образуют Т-клеточный антигенраспознающий комплекс.

Самые первые этапы дифференцировки Т-клеток совершаются в костном мозге. Здесь от общего лимфоидного предшественника происходит дивергенция развития по двум самостоятельным путям: В- и Т-клеточным направлениям. Однако если В-клетки для своего формирования почти полностью довольствуются микроокружением костномозговой ткани, то основным местом развития Т-клеток является тимус. На этом этапе дифференцировки в костном мозге ранние предшественники Т-клеток несут общие антигены с тканью головного мозга: Sca-1 и Sca-2, а также в малом количестве наиболее характерный антиген Т-клеток - CD90 (Thy-1).

Основным антигеном, позволяющим обнаружить ранние предшественники Т-клеток, является Sca-1. Экспрессия антигена Thy-1 слишком слаба, чтобы быть надежным маркером при изучении процессов развития. В тимусе как основном органе формирования фенотипически (но не функционально) зрелых Т-клеток осуществляются главные события, связанные с экспрессией на поверхности тимоцитов основного маркера - рецептора TCR и сопутствующих ему белков, маркеров-корецепторов CD4 и CD8 (молекул, определяющих деление Т-клеток на субпопуляции Т-хелперов и Т-киллеров соответственно). Здесь же происходит усиление экспрессии маркера всех Т-клеток - антигена Thy-1. В тимусе в результате положительной и отрицательной селекции Т-клетки приобретают два существенных свойства: клональность - экспрессию отдельно взятой клеткой и ее потомством TCR только одной определенной специфичности и неспособность реагировать на собственные антигены за счет элиминации клеток, несущих TCR к таким антигенам.

NK-клетки
Среди лимфоцитов периферии имеется популяция, получившая название натуральных киллерных клеток (NK). Характерной особенностью этих лимфоцитоподобных клеток является отсутствие у них структур, способных к специфическому распознаванию антигена, подобных тем, которыми обладают Т- и В-клетки. В то же время они, как и Т-киллеры, разрушают определенную категорию чужеродных клеток, но в отличие от последних неспецифическим образом. Способность к такому лизису объединяет их с активированными макрофагами. В организме NK-клетки составляют около 15 % от всех лимфоцитов.

Наиболее характерными, функционально значимыми молекулами клеточной поверхности NK, обеспечивающими их контакт с чужеродными клетками и последующий лизис этих клеток-мишеней, являются CD56 (NKH1) - изоформа адгезивного белка N-CAM, CD 161 (NKR.P-1), и KAR (от англ. - killer activation receptor). Кроме этих рецепторов как специфических молекулярных структур NK имеются и такие, которые являются общими с другими клетками. Не обладая эффектом киллинга, они способствуют взаимодействию NK с клеткой-мишенью. К ним относится CD 16 (FcyRIII) - низко аффинный рецептор К-клеток (субпопуляции NK), связывающий агрегированный IgGl и IgG3. В реализации цитолиза в качестве вспомогательных структур участвуют также молекулы адгезии: CD11/CD18 (LFA-1, Мас-1, CR4), CD44, CD2 (LFA-2) и др.

Уникальным свойством NK является их способность быть инертными к собственным (аутологичным) клеточным антигенам гистосовместимости при сохранении агрессивности по отношению к клеткам, несущим гомологичные аллоантигены. В иммунологии это явление получило название «метка своего». Значение подобной дискриминационной функции состоит в контроле за возможными мутационными изменениями собственных антигенов. В таком контроле за неизменностью собственных антигенов, по крайней мере тех, которые относятся к молекулам I класса МНС, принимают участие структуры, относящиеся к суперсемейству иммуноглобулинов (см. гл. 5). Среди них: NKB. 1 (распознавание молекулы I класса HLA-B у человека), группа белков KIR (от англ. - killer inhibitory receptor), которые распознают молекулы HLA-C. Белки группы KIR представлены несколькими изоформами, т. е. гены, контролирующие их, образуют целые полигенные семейства. В каждой конкретной клетке экспрессируется только одна из возможных изоформ, что позволяет говорить об определенной клональной организации NK.

Гистогенез NK связан с развитием лимфоцитов вообще и Т-клток в частности. Предполагается, что NK являются ответвлением от самых ранних этапов Т-клеточного пути дифференцировки вкостном мозге. О близости между NK- и Т-клетками говорит ряд фактов: наличие общих маркеров и ростстимулирующих факторов, присутствие предшественников NK в тимусе, функциональная идентичность по конечному результату - разрушение чужеродных клеток, наличие (3-цепи Т-клеточного антигенраспознающего рецептора (TCR) у NK. Незрелые, еще не начавшие экспрессию основных дифференцировочных маркеров-корецепторов CD4- и СБ8-тимоциты (CD4-CD8-) эмбрионального тимуса, попадая в микроокружение селезенки, развиваются в NK-клетки. Из 24 маркеров CD у NK-клеток 5 являются общими только с Т-клетками. В категорию общих маркеров входят, с одной стороны, такой мажорный антиген NK, как CD56, а с другой - специфический антиген Т-киллеров CD8, представленный у NK в формеции этих эволюциоино наиболее древних клеток крайне разнообразны: участие в неспецифическом иммунном ответе, удаление отживших и разрушенных клеток собственного организма (функция мусорщика), специфический иммунный ответ в качестве презентирующей антиген клетки, выполнение функции цитотоксической клетки, продукция большого арсенала цитокинов и иных эндогенных соединений, регулирующих иммунный процесс.

Морфологически макрофаги детально охарактеризованы. Они представляют собой крупные полиморфные клетки диаметром 15 - 25 мкм, с ядром неправильной формы, имеющим тонко структурированный хроматин. Зрелые макрофаги подразделяются на подвижные, мигрирующие в очаги воспаления, места тканевой деструкции, и резидентные, локализованные в отдельных органах и тканях. К резидентным макрофагам относятся гистиоциты соединительной ткани, звездчатые ретикулоэндотелиоциты печени (купферовские клетки), альвеолярные макрофаги легких, макрофаги костного мозга, макрофаги селезенки и лимфатических узлов, клетки микроглии нервной системы.

Гистогенез макрофагов, как и других клеток лимфомиелоидного комплекса, начинается от стволовой кроветворной клетки костного мозга. Весь путь развития макрофагов проходит под влиянием клеточных и гуморальных факторов микроокружения. Первый этап дифференцировки приводит к образованию клетки-предшественницы для всех ростков миелоидного пути развития. На этом этапе действуют в первую очередь интерлей-кин-3 (ИЛ-3) и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ). Эти же факторы оказывают влияние и на последующие этапы дифференцировки, приводящие к образованию общего предшественника макрофагов и гранулоцитов, монобластов, промоноцитов. При образовании моноцитов определенная роль принадлежит ИЛ-6. Костномозговой путь развития завершается образованием промоноцита, который, мигрируя в кровь, трансформируется в моноцит. В крови моноцит в качестве самостоятельной клетки существует около 2 -6 ч, после чего мигрирует в периферические органы, где через стадию незрелого макрофага завершает свой путь развития, превращаясь в зрелую, не способную к пролиферации форму.

Среди мембранных белков макрофаги в отличие от других клеток имеют рецепторы ко всем классам иммуноглобулинов (CD 16, CD23, CD32, CD64). Важными для макрофагов как антигенпрезентирующих клеток являются корецепторы CD80 и CD86, хотя их полноценная экспрессия начинается только после стимуляции клеток. Два рецептора - CD1 lb/CD18 и CDllc/CD18 - существенны не только для связи с компонентами комплемента, но и для распознавания опсонизированных микробных и иных клеток, что приводит к эффективному их поглощению макрофагами. Для полноценной реализации своей основной функции - поглощения микробных тел, важен также рецептор CD 14, взаимодействующий с липополисахаридами бактерий. При взаимодействии с межклеточным матриксом и другими клетками макрофаги используют рецепторы, относящиеся к группе интегринов, например CD1 la/CD18, CD1 lb/ CD18, CD49 и др. Являясь активными эффекторными и регуляторными клетками в проявлении как неспецифического, так и специфического иммунного ответа, макрофаги обладают также набором рецепторов к цитокинам и другим биологически активным соединениям.

Дендритные клетки
Значительная роль на начальных этапах формирования специфического иммунного ответа принадлежит дендритным клеткам (ДК), способным представлять антиген в иммуногенной форме и сохранять его для ускоренного развития вторичного иммунного ответа, т.е. поддерживать иммунологическую память. Различают несколько типов дендритных клеток. Основными являются дендритные клетки тимуса, лимфатических узлов, слизистых оболочек, а также зародышевых центров - мест концентрации В-лимфоцитов в лимфоидной ткани. Предполагается, что клетки Лангерганса (белые отростчатые эпидермоциты) и вуалевые клетки лимфы представляют собой предшествующие, этапные формы дендритных клеток тимуса и лимфатических узлов. В то же время дендритные клетки зародышевых центров рассматриваются как самостоятельная субпопуляция локального происхождения.

Основной морфологической характеристикой всех дендритных клеток является наличие длинных выростов цитоплазмы (отсюда и название клеток - древовидный, ветвящийся). В строме лимфоидных органов эти клетки прочно фиксированы и окружены контактирующими с ними лимфоцитами. Гистогенез дендритных клеток точно не охарактеризован. Ясно только то, что они, за возможным исключением фолликулярных дендритных клеток, имеют костномозговое происхождение. При этом требуется дальнейшее внимательное изучение их полного пути развития. Клетки, ткани и органы иммунной системы входят в состав лимфомиелоидного комплекса. Комплекс включает костный мозг, тимус, селезенку, лимфатические узлы, лимфоидную ткань, ассоциированную с кишечником, соединительную ткань. Одна из определяющих функций комплекса состоит в обеспечении кроветворения (миелопоэза) и образовании клеток иммунной системы (лимфопоэза). Клетки крови (эритроциты, мегакариоциты, гра нулоциты, моноциты) и лимфоциты имеют общего родоначального предшественника - стволовую кроветворную клетку, локализованную в костном мозге. Однако на самом раннем этапе костномозговой дифференцировки происходит дивергенция общего стволового элемента на стволовую клетку для миелопоэза и стволовую клетку для лимфопоэза. Именно с данного момента лимфоидная (иммунная) система вступает в самостоятельный ранг, при этом ее автономия не означает полного разрыва с другими функциональными системами организма. Объединяющим моментом является в первую очередь набор общих регуляторных молекул (цитокинов, гормонов, медиаторов нервной системы и т.д.).

Широкое распространение по организму клеток лимфоидной системы роднит ее с кровеносной системой. «Оккупация» организма лимфоцитами проявляется в формах организации лимфоидной ткани: наличии диффузной инфильтрации лимфоцитами различных тканевых образований, скопления лимфоцитов в слизистых покровах, разветвленной сети лимфатических узлов и соединяющих их сосудов. Основные клетки иммунной системы - это Т- и В-лимфоциты, NK-клетки, макрофаги, дендритные клетки. Каждый из этих клеточных типов имеет свое, свойственное лишь ему сочетаниеповерхностных рецепторов и маркеров, что позволяет дифференцировать их не только морфологически, но и по особенностям экспрессии поверхностных молекул.

по биологии

«Лимфоидные клетки»


Ежесуточно в первичных лимфоидных органах - тимусе и постнатальном костном мозге - образуется значительное количество лимфоцитов. Часть этих клеток мигрирует из кровотока во вторичные лимфоидные ткани - селезенку, лимфатические узлы и лимфоидные образования слизистых оболочек. В организме взрослого человека содержится примерно 10 12 лимфоидных клеток и лимфоидная ткань в целом составляет приблизительно 2% обшей массы тела. При этом на лимфоидные клетки приходится примерно 20% циркулирующих с кровотоком лейкоцитов. Многие зрелые лимфоидные клетки относятся к долгоживущим и могут многие годы существовать в качестве клеток иммунологической памяти.

Лимфоциты морфологически разнообразны

В обычном мазке крови лимфоциты различаются как по размерам, так и по морфологии. Варьирует соотношение величина ядра: величина цитоплазмы, а также форма самого ядра. В цитоплазме некоторых лимфоцитов могут содержаться азурофильные гранулы.

При световой микроскопии мазков крови, окрашенных, например, гематологическим красителем Гимза, можно обнаружить два морфологически различных типа циркулирующих лимфоцитов: первый - относительно мелкие клетки, в типичном случае лишенные гранул, с высоким соотношением Я:Ц - и второй - более крупные клетки с меньшим соотношением Я.Ц, содержащие в цитоплазме гранулы и известные как большие гранулярные лимфоциты.

Покоящиеся Т-клетки крови

Большая часть их экспрессирует бв-Ф-клеточные рецепторы и может иметь один из двух описанных выше типов морфологии. Большинство хелперных Т-клеток и часть цитотоксических Т-лимфоцитов относятся к малым лимфоцитам, лишенным гранул и имеющим высокое соотношение Я:Ц. Кроме того, в их цитоплазме присутствуют особая структура, названная тельцем Голла, - скопление первичных лизосом возле липидной капли. Тельце Голла легко выявить при электронной микроскопии или цитохимически, методом определения лизосомных ферментов. Менее 5% Тх-клеток и примерно половина Тц имеют другой тип морфологии, характерный для БГЛ, с рассеянными по цитоплазме первичными лизосомами и хорошо развитым комплексом Гольджи. Интересно, что у мыши нет цитотоксических Т-клеток, сходных по морфологии с БГЛ.

Признаки больших гранулярных лимфоцитов свойственны также еще одной субпопуляции Т-лимфоцитов, а именно Т-клеткам с гд-рецепторами. В лимфоидных тканях эти клетки имеют дендритную морфологию; при культивировании in vitro они способны прикрепляться к подложке, принимая в результате разнообразную форму.

Неактивированные В-клетки крови. Эти клетки не содержат тельца Голла и морфологически не сходны с большими гранулярными лимфоцитами; их цитоплазма в основном заполнена рассеянными монорибосомами. В кровотоке иногда можно наблюдать активированные В-клетки с развитым шероховатым эндоплазматиче-ским ретикулумом.

НК-клетки Нормальные киллерные клетки, подобно гд-Ф-клеткам и одной из субпопуляций Тц, имеют морфологию БГЛ. Однако при этом в их цитоплазме больше азурофильных гранул, чем у гранулярных Т-клеток.

Лимфоциты экспрессируют особые у каждой субпопуляции поверхностные маркеры

На поверхности лимфоцитов присутствует множество разнообразных молекул, которые могут служить метками различных субпопуляций. Значительная часть этих клеточных маркеров в настоящее время легко идентифицируется с помощью специфических моноклональных антител. Разработана систематизированная номенклатура маркерных молекул; в ней группы моноклональных антител, каждая из которых специфически связывается с определенной маркерной молекулой, обозначены символом CD. За основу CD-номенклатуры принята специфичность прежде всего мышиных моноклональных антител к лейкоцитарным антигенам человека. В создании этой классификации участвуют многие специализированные лаборатории разных стран. Для ее обсуждения проведена серия международных рабочих встреч, на которых удалось определить характерные наборы образцов моноклональных антител, связывающихся с различными популяциями лейкоцитов, а также молекулярные массы выявляемых при этом маркеров. Моноклональные антитела совпадающей специфичности связывания объединяют в одну группу, присваивая ей номер в системе CD. Однако в последнее время принято таким образом обозначать не группы антител, а маркерные молекулы, распознаваемые данными антителами

В дальнейшем молекулярные маркеры стали классифицировать в соответствии с информацией, которую они несут об экспрессируюших их клетках, например:

Популяционные маркеры, которые служат характерным признаком данного цитопоэтического ряда, или линии; пример - маркер CD3, выявляемый только на Т-клетках;

Дифференцировочные маркеры, экспрессируемые временно, в процессе созревания; пример - маркер CD1, который присутствует на развивающихся тимоцитах, но не на зрелых Т-клетках;

Маркеры активации, такие как CD25 - низкоаффинный Т-клеточный рецептор для фактора роста, экспрессируемый только на Т-клетках, активированных антигеном.

Иногда такой подход к классификации маркеров весьма полезен, однако не всегда он возможен. У некоторых популяций клеток маркер активации и маркер дифференцировки - это одна и та же молекула. Например, CD 10, присутствующий на незрелых В-клетках, исчезает при созревании, но появляется вновь при активации.

Кроме того, маркеры активации могут постоянно присутствовать на клетках в низкой концентрации, но в более высокой - после активации. Так, под действием ИФу возрастает экспрессия молекул главного комплекса гистосовместимости класса II на моноцитах.

Клеточные маркеры образуют несколько семейств

Компоненты клеточной поверхности относятся к различным семействам, гены которых произошли, вероятно, от нескольких предковых. Маркерные молекулы из разных семейств различаются по структуре и образуют следующие основные группы:

Суперсемейство иммуноглобулинов, включающее молекулы, близкие по строению к антителам; к нему относятся CD2, CD3, CD4, CD8, CD28, молекулы МНС классов I и II, а также многие другие;

Семейство интегринов - гетеродимерных молекул, образованных а- и в-цепями; существует несколько подсемейств интегринов; все члены одного подсемейства имеют общую в-цепь, но разные, уникальные в каждом случае, б-цепи; в одном из подсемейств ф 2 -ин-тегрины) в-цепь представляет собой маркер CDI8. В комбинации с CDI la, CDI lb, CDI Ic или aD он образует соответственно лимфоци-тарные функциональные антигены LFA-1, Мас-1 и с 150, 95 и молекулы клеточной поверхности быв 9 , часто выявляемые на лейкоцитах. У второго подсемейства в-цепь представляет собой маркер CD29; в сочетании с различными б-цепями он образует маркеры поздней стадии активации;

Селектины, экспрессируемые на лейкоцитах или на активированных клетках эндотелия. Они обладают лектиноподобной специфичностью в отношении Сахаров в составе высокогликозилированных мембранных гликопротеинов; к селектинам относится, например, CD43;

Протеогликаны, имеющие ряд глюкозаминогликановых участков связывания; пример - хондроитинсульфат.

Другие семейства клеточных маркеров - это суперсемейство рецепторов для фактора некроза опухолей и фактора роста нервов, суперсемейство лектинов С-типа, включающее, например, CD23, а также суперсемейство многодоменных трансмембранных рецепторных белков, в которое входит рецептор для ИЛ-6.

Следует подчеркнуть, что маркеры, экспрессируемые лимфоцитами, можно обнаружить и на клетках иных линий. Так, CD44 часто выявляется на клетках эпителия. Молекулы клеточной поверхности можно выявить с помощью флуоресцирующих антител, используемых в качестве зондов. На этом подходе основан метод проточной иммунофлуоресцентной цитометрии, позволяющей сортировать и подсчитывать клетки в зависимости от их размеров и параметров флуоресценции. С помощью этого метода удается проводить детальную сортировку популяций лимфоидных клеток.

Т-клетки различаются по своим антигенраспознающим рецепторам

Маркером, характеризующим линию Т-клеток, служит Т-клеточный рецептор для антигена. Имеется два различных типа ТкР, и тот и другой - гетеродимеры из двух соединенных ди-сульфидными связями полипептидных цепей. ТкР первого типа образован цепями б и в, второго типа, сходный по структуре - цепями г и д. Оба рецептора ассоциированы на клеточной поверхности с пятью полипептидами СОЗ-комплекса, образуя вместе с ним рецепторный комплекс Т-клетки. Примерно 90-95% Т-клеток в крови представляют собой бв-Ф-клетки, остальные 5-10% - гд-Ф-клетки.

бв-Ф-клетки различаются в свою очередь по экспрессии CD4 или CD8

бв-Ф-клетки подразделяются на две различные, неперекрывающиеся субпопуляции: клетки одной из них несут маркер CD4 и в основном «помогают» в осуществлении иммунного ответа или «индуцируют» его, клетки другой несут маркер CD8 и обладают преимущественно цитотоксической активностью. Т-клетки CD4 + распознают антигены, к которым они специфичны, в ассоциации с молекулами МНС класса II, тогда как Т-клетки CD8 + способны узнавать антигены в ассоциации с молекулами МНС класса 1. Таким образом, возможность взаимодействия Т-клетки с клеткой другого типа зависит от присутствия на первой маркера CD4 или CD8. Небольшая часть бв-Ф-клеток не экс-прессирует ни CD4, ни CD8. Подобным же образом «дважды отрицательны» большинство циркулирующих гд-Ф-клеток, хотя некоторые из них все же несут CD8. Напротив, большая часть гд-Ф-клеток в тканях экспрессирует этот маркер.

бв-Ф-клетки CD4 + и CD8 + подразделяются на функционально различные субпопуляции

Как отмечено выше, примерно 95% Т-клеток CD4 + и 50% Т-клеток CD8 + морфологически представляют собой малые негранулярные лимфоциты. Эти популяции можно дифференцировать дальше по фенотипической экспрессии CD28 и CTLA-4 на функционально различные субпопуляции. Экспрессируемый Т-клетками CD4 + маркер CD28 обеспечивает передачу кос-тимулирующего сигнала активации при распознавании антигена. Лигандами CD28 служат молекулы В7-1 и В7-2 на АПК. Гомологичную CD28 молекулу CTLA-4 Т-клетки CD4 + начинают экспрессировать после активации. CTLA-4 связывается с теми же лигандами, что и CD28, тем самым ограничивая активацию. Кроме того, бв-Ф-клетки экспрессируют различные изоформы общего лейкоцитарного антигена, CD45. Считается, что CD45RO, а не CD45RA, связан с клеточной активацией. Для выделения функционально различных субпопуляций бв-Ф-клеток используют также другие критерии, в частности экспрессию клеточных маркеров нормальных киллерных клеток, выявляемых на 5-10% циркулирующих Т-клеток. Эти клетки образуют ИЛ-4, но не ИЛ-2, и дают слабый пролиферативный ответ на антигены и митогены.

В пределах собственной пластинки слизистой оболочки расположены, главным образом, плазматические клетки . Большинство этих клеток, обнаруживаемых при рождении, содержат IgM с небольшим количеством IgG или IgA. После того, как индивидуум становится способным отвечать на антигены окружающей среды (это происходит приблизительно к двухлетнему возрасту), в lamina propria в основном обнаруживаются плазматические клетки, содержащие IgA. Такая же картина наблюдается и у взрослых. Известно, что кишечная флора является очень важным фактором, стимулирующим продукцию плазматическими клетками IgA. Это подтверждается пониженным содержанием плазматических клеток в lamina propria у животных, которых выращивали в безмикробной среде.

Лимфоциты в слизистой оболочке имеют специализированные функции и локализуются в специфических участках. В пределах эпителиального слоя они находятся между эпителиальными клетками и получили название интраэпителиальных лимфоцитов (ИЭЛ; по некоторым авторам -интерэпителиальные).

Интраэпителиальные Т-лимфоциты фенотипически и функционально отличаются от Т-лимфоцитов периферической крови. Почти все ИЭЛ имеют на своей поверхности антиген 1 лимфоцитов слизистых оболочек человека (HML-1 -human mucosal lymphocyte antigen 1), которого нет на Т-лимфоцитах периферической крови. Среди интраэпителиальных Т-лимфоцитов большинство клеток имеет CD8 маркер (75%) и только 6% - CD4 маркер. Часть интраэпителиальных Т-лимфоцитов относится к гамма-, дельта- Т-лимфоцитам (подробней о γδ Т-лимфоцитах сказано в конце главы).

В собственной пластинке слизистой оболочки помимо плазматических клеток и Т-лимфоцитов обнаружены также В-лимфоциты, ЕК-клетки, тканевые базофилы и макрофаги. Количество Т-клеток в 4 раза больше, чем В-клеток. Среди Т-клеток lamina propria, в противоположность интраэпителиальным, 80% имеют фенотип Т-хелперов (CD4) и только 20% фенотип Т-киллеров (CD8). Следует отметить, что роли интраэпителиальных Т-лимфоцитов, несущих гамма-, дельта- Т-клеточный распознающий рецептор, как "сторожевых" клеток, расположенных на территории слизистых оболочек, сегодня уделяется большое внимание. Кроме интраэпителиальных гамма-, дельта-Т-лимфоцитов CD8+ в слизистых оболочках имеются также интраэпителиальные В-лимфоциты, но они располагаются, в основном, в пределах тех участков, где больше всего присутствуют М-клетки.

Лимфоциты, расположенные в собственной пластинке слизистых оболочек, по функциональным особенностям сходны с лимфоцитами периферической крови. 1. И те, и другие выполняют как стимулирующую, так и супрессивную функцию при синтезе иммуноглобулинов. 2. Лимфоциты и той, и другой локализации, могут реализовывать цитотоксическую активность. 3. На поверхности лимфоцитов, расположенных в lamina propria и в периферической крови, имеются одинаковые структуры и почти в тех же пропорциях. Так, соотношение CD4+ и CD8+ Т-лимфоцитов для клеток обоих типов составляет 2:1. Однако, нельзя сказать, что это одни и те же клетки, поскольку лимфоциты периферической крови имеют несколько фенотипических поверхностных признаков, отличающих их от лимфоцитов lamina propria. Например, функциональное отличие Т-лимфоцитов-хелперов lamina propria и Т-лимфоцитов-хелперов периферической крови состоит в том, что только первые могут оказывать помощь В-лимфоцитам слизистых оболочек в их продукции секреторного IgA; Т-лимфоциты-хелперы периферической крови такой способностью не обладают.

Слизистая оболочка кишок в норме содержит активированные макрофаги, которые отличаются от моноцитов сыворотки крови, прежде всего тем, что находятся в состоянии высокой степени активации фагоцитоза и киллинговой способности. До сих пор не установлено, отчего это происходит: от большого количества инфекционных агентов в кишках либо от лимфокинов, вырабатываемых лимфоидной популяцией в пределах lamina propria. Действительно, присутствие микроорганизмов и их продуктов может усиливать высвобождение лимфокинов лимфоидными клетками слизистой оболочки. Важнейшими функциями макрофагов lamina propria является презентация антигенов и продукция цитокинов в этом участке.

Основным местом образования лимфоцитов служит кроветворная ткань селезенки и лимфатических узлов. В костном мозге и периферической крови в норме встречаются только зрелые лимфоциты. При патологии в костном мозге и периферической крови могут появляться незрелые и атипические формы клеток лимфоидного ростка.

Клетки лимфоидного ростка

К клеткам лимфоидного ростка относятся:

Лимфобласт

Лимфобласт - клетка лимфоидного ряда размером 12 - 18 мкм. Ядро круглое или слегка овальное, распределение хроматина в нем неравномерное, рыхлое. В ядре чаще содержится 1, реже 2 - 3 ядрышка голубого цвета. Цитоплазма базофильная, с отчетливо выраженной перинуклеарной зоной.

Лимфобласты (фотографии)

Пролимфоцит

Пролимфоцит - клетка несколько меньшего размера, чем лимфобласт (12 - 15 мкм). Структура ядра грубая, отчетливо видны 1 - 2 нуклеолы светло-фиолетового цвета. Цитоплазма не отличается от таковой лимфобласта.

В норме лимфобласты и пролимфоциты встречаются в селезенке и лимфоузлах, в костном мозге и периферической крови они появляются только при патологии.

Пролимфоциты (фотографии)

Лимфоцит

Лимфоцит - зрелая клетка лимфоидного ряда, размером чаще 7 - 10 мкм. Ядро круглое, овальное, иногда бобовидное. Структура ядра грубая, чаще состоит из грубых комков базихроматина и оксихроматина, создавая впечатление глыбчатости. Ядро окрашивается в темно- или светло-фиолетовый цвет, в нем иногда обнаруживаются небольшие светлые участки, имитирующие ядрышки. Цитоплазма лимфоцита светло-синяя с просветлением вокруг ядра. Часть лимфоцитов имеет в цитоплазме азурофильную зернистость, окрашивающуюся в красный цвет. Ободок цитоплазмы может иметь различные размеры, в связи с чем, лимфоциты делят на три группы: узкоцитоплазменные, среднецитоплазменные и широкоцитоплазменные. В литературе широкоцитоплазменные лимфоциты часто называют "большими", диаметр их составляет 9 - 15 мкм, цитоплазма занимает значительную часть клетки, светло-голубая, часто с крупными азурофильными гранулами. Хроматин ядра грубый, но не такой плотный как у остальных лимфоцитов. Среднецитоплазменные и узкоцитоплазменные лимфоциты часто называют "малыми", они составляют большую часть лимфоцитов периферической крови. Их диаметр 6 - 9 мкм, ядро круглое или слегка овальное, темноокрашенное, с плотным хроматином, занимает большую часть клетки. Цитоплазма видна как узкий ободок или "серп" вокруг ядра.

Малые лимфоциты (фотографии)

Большие лимфоциты (фотографии)

Атипичные лимфоциты

При различных патологических процессах могут обнаруживаться атипичные формы лимфоцитов :

  1. клетки небольших размеров с пикнотическим ядром и еле заметной цитоплазмой;
  2. клетки Ридера , имеющие почкообразную зазубренную форму ядер или двудольчатые формы ядер;
  3. клетки с вакуолизацией в цитоплазме , реже - в ядре;
  4. голые лимфоцитарные ядра ;
  5. клетки лейколиза - разрушенные в процессе приготовления препарата лимфоциты. В большом количестве встречаются при хроническом лимфолейкозе (клетки Боткина-Гумпрехта);
  6. атипичные мононуклеары - большие клетки с обильной базофильной цитоплазмой. Часто темная базофильная периферическая цитоплазма отделяется тонкой линейной границей от более бледной околоядерной зоны. Ядра большие, могут содержать ядрышки и иногда имеют вдавления. Они очень похожи на ядра моноцитов. Такие клетки встречаются преимущественно при инфекционном мононуклеозе, но могут встречаться и при других вирусных инфекциях;
  7. плазматизированные лимфоциты - широкоплазменные лимфоциты с интенсивно синей цитоплазмой и тяжистым ядром. Встречаются при вирусных инфекциях.

Клетки лейколиза (фотографии)

Атипичные мононуклеары (фотографии):

Плазматизированные лимфоциты (фотографии):

Плазмобласт, проплазмоцит и плазмоцит

К клеткам лимфоидного ростка относятся также плазмобласт, проплазмоцит и плазмоцит.

Плазмобласт - клетка размером 16 - 20 мкм. Ядро нежной структуры, занимает большую часть клетки, располагаясь центрально или несколько эксцентрично. Нуклеолы (1 - 2) не всегда четко видимы. Цитоплазма интенсивно синего цвета; характерна перинуклеарная зона просветления.

Проплазмоцит - переходная форма от плазмобласта к зрелому плазмоциту. Размер клетки несколько больше, чем у зрелого плазмоцита (иногда до 20 мкм). Ядро занимает большую часть клетки и часто расположено эксцентрично, в нем могут быть видны остатки нуклеол. Цитоплазма резко базофильна с просветлением вокруг ядра, иногда синий цвет выражен меньше.

Плазмоциты - зрелые плазматические клетки. Весьма разнообразны по форме и величине (размер от 8 до 20 мкм). Ядро круглой или овальной формы, имеет грубую колесовидную исчерченность и расположено эксцентрично. Цитоплазма окрашена в интенсивно синий цвет с ясно выраженной перинуклеарной зоной просветления; может содержать различные вакуоли, что придает ей ячеистое строение. Плазматические клетки больших размеров могут иметь цитоплазму, окрашенную в серо-голубой цвет с менее отчетливой перинуклеарной зоной или с отсутствием ее. Иногда встречаются двух- и трехъядерные формы.

Плазматические клетки (микрофотографии):

В норме единичные плазмобласты, проплазмоциты и плазматические клетки встречаются в пунктате лимфоузлов и селезенки, в костном мозге встречаются единичные плазмоциты. В периферической крови плазматические клетки встречаются только при патологии: при ряде инфекций (корь, краснуха, ветряная оспа), сывороточной болезни, некоторых болезнях кожи, инфекционном мононуклеозе, агранулоцитозе, туберкулезе, лимфогранулематозе, тяжелом сепсисе, крупозной пневмонии, актиномикозе, циррозе печени, миеломной болезни.

Плазматические клетки при миеломной болезни обычно называют миеломными, так как они могут иметь характерные черты. Миеломные клетки имеют часто большие размеры, достигающие иногда 40 мкм и более в диаметре. Ядро нежное, содержит 1 - 2 больших или несколько мелких ядрышек, окрашенных в голубой цвет. Нередко встречаются клетки с 3 - 5 ядрами. Цитоплазма больших размеров, окрашивается в различные цвета: светло-голубой, светло-фиолетовый, интенсивно-фиолетовый, а иногда красноватый, обусловленный присутствием гликопротеидов. Околоядерное просветление выражено нечетко или отсутствует. Иногда в цитоплазме находят гиалиновые включения - тельца Русселя величиной 2 - 4 мкм, количество которых варьирует.

Литература:

  • Л. В. Козловская, А. Ю. Николаев. Учебное пособие по клиническим лабораторным методам исследования. Москва, Медицина, 1985 г.
  • Руководство по клинической лабораторной диагностике. (Части 1 - 2) Под ред. проф. М. А. Базарновой, академика АМН СССР А. И. Воробьева. Киев, "Вища школа", 1991 г.
  • Руководство к практическим занятиям по клинической лабораторной диагностике. Под ред. проф. М. А. Базарновой, проф. В. Т. Морозовой. Киев, "Вища школа", 1988 г.
  • Справочник по клиническим лабораторным методам исследования. Под ред. Е. А. Кост. Москва "Медицина" 1975 г.
  • Исследование системы крови в клинической практике. Под ред. Г. И. Козинца и В. А. Макарова. - Москва: Триада-Х, 1997 г.