Жульева Н.М, Бадзгарадзе Ю.Д., Жульева С.Н.

Структурно-функциональная единица нервной системы – нервная клетка с ее отростками. Трофическим центром клетки является тело (перикарион); воспринимающие (центрипетальные) отростки носят название дендритов. Отросток, по которому нервный импульс идет центрифугально, от тела клетки к рабочему органу, обозначается как аксон (нейрит). Нервное волокно состоит из аксона (нейрита, осевого цилиндра) и окружающих его шванновских клеток (леммоцитов), образующих неврилемму. В мякотных (миелинизированных) нервных волокнах кнаружи от миелинового слоя располагается неврилемма или шванновская оболочка. На относительно правильных промежутках миелиновая обкладка прерывается и нервное волокно разделяется на сегменты. Каждый сегмент образован одним леммоцитом. Между сегментами имеются промежутки, в которых отсутствует миелиновая оболочка (перехваты Ранвье); именно в этих местах активно происходят обменные процессы, способствующие проведению нервного импульса по аксону.

Нервный ствол и его ветви составлены из аксонов, берущих начало от тел клеток нескольких типов, связанных с различными эффекторными и сенсорными органами и функциями. Двигательные волокна от клеток передних рогов спинного мозга и гомологичных ядер мозгового ствола составляют основную массу передних спинальных(и черепных двигательных) корешков, но в них представлены также симпатические и парасимпатические волокна. Задние корешки спинного мозга и чувствительные – мозгового ствола, - содержат сенсорные волокна, тела клеток которых заключены в ганглиях задних корешков (межпозвонковых узлах) и гомологичных ганглиях головного мозга. После соединения спинальных корешков формируются функционально смешанные нервные фуникулы (канатики Сикара), а затем, - на шейном, грудном, поясничном и крестцовом уровнях – сплетения. Из этих сплетений образуются крупные нервные стволы, несущие моторные и сенсорные волокна. Таким образом, не касаясь пока черепных нервов, можно резюмировать, что к периферической спинальной («анимальной») нервной системе, кроме тел клеток серого вещества спинного мозга, относятся передние и задние корешки, корешковый нерв Нажотта (от линии твердой мозговой оболочки до спинального ганглия), спинальный ганглий (под которым расположен передний корешок), далее после ганглия – спинальный канатик Сикара (фуникул), который делится на задние ветви, иннервирующие затылочные и спинные мышцы и кожу задней поверхности шеи и спины, и передние ветви, иннервирующие мышцы и кожу вентральных отделов туловища и конечностей. С точки зрения топической классификации заболеваний периферической нервной системы эти сведения хорошо поясняет старая схема, предложенная Сикаром. Она же отражает и рутинные представления того времени о почти исключительно инфекционно-воспалительном происхождения заболеваний периферической нервной системы.

Источником симпатической иннервации на шейно-грудном уровне являются тела нейронов в боковых рогах серого вещества спинного мозга, от которых идут прегангглионарные миелинизированные волокна, покидающие передние корешки и контактирующие затем с паравертебральными симпатическими ганглиями (симпатический ствол) или входящие в состав черепных нервов. Подобно этому, преганглионарные парасимпатические волокна идут из передних спинальных корешков в область таза, а на краниальном уровне входят в состав III, IX и X пар черепных нервов. Парасимпатические ганглии расположены в связанных с ними эффекторных органах или вблизи от них.

Многие крупные черепные и спинальные нервы идут в тесном продольном соприкосновени с артериями и венами, образуя нервно-сосудистые пучки, и этот факт приходится учитывать, имея в виду возможность вторичного поражения нервов при патологии сосудов. На конечностях, по направлению к периферии, нервы находятся в более тесном контакте с венами, нежели с артериями и здесь также возможно вторичное страдание нервов (например, при е, флеботромбозе), причем именно поверхностно расположенных чувствительных ветвей нервов.

При осмотре невооруженным глазом нерв выглядит как белая шнуроподобная структура с довольно гладкой поверхностью, покрытой плотно прилегающей, но не спаянной с нервом, жировой тканью. В наиболее мощных нервах, таких как седалищный, через нее просвечивают крупные нервные пучки – фасцикулы. На поперечном гистологическом срезе наружная поверхность нерва окружена соединительнотканным футляром – периневрием, состоящим из концентрических слоев жировых клеток, разделенных слоями коллагена. Наконец, эндоневрий также представляет собой футляр, содержащий нервные волокна, шванновские клетки (леммоциты), кровеносные сосуды вместе с пучками тонких эндоневральных коллагеновых волокон, ориентированных вдоль нервных пучков. В эндоневрии содержится также небольшое количеств офибробластов.. Эндоневральный коллаген плотно прилегает к поверхности каждого нервного пучка.

Несомненно, что три указанных выше футляра выполняют роль механической защиты нерва от повреждений, однако эндоневральная соединительная ткань выполняет и роль своеобразной полупроницаемой перегородки, через которую из кровеносных сосудов к шванновским клеткам и нервным волокнам диффундируют питательные вещества. Окружающие нервные волокна пространства, как и гематоэнцефалический барьер, также является барьером. Барьер «кровь-нерв» не пропускает чужеродные белковосвязанные соединения. Продольное расположение эндоневрального коллагена имеет существенное значение в качестве фактора, препятствующего тракционной травматизации нерва. В то же время коллагеновый каркас допускает определенную свободу смещения нервного волокна при сгибательных движениях конечностей и ориентирует направление роста нервных волокон при регенерации нерва.

Структура нервных волокон неоднородна. Большинство нервов содержит миелинизированные и немиелинизированные или слабо миелинизированные волокна с неодинаковым соотношением их между собой. Клеточный состав эндоневральных пространств отражает уровень миелинизации. В норме 90% обнаруживаемых в этом пространстве клеточных ядер относится к клеткам Шванна (леммоцитам), а остальные принадлежат фибробластам и капилярному эндотелию. При 80% шванновских клеток окружают немиелинизированных аксоны; рядом с миелинизированными волокнами их количество уменьшено в 4 раза. Тотальный диаметр нервного волокна, т. е. аксон-цилиндра (нейрита) и миелинового футляра, вместе взятых, имеет не только морфологический интерес. Миелинизированные волокна большого диаметра проводят импульсы в значительно более быстром темпе, чем слабо миелинизированные или немиелинизированные. Наличие такой корреляции послужило основой для создания ряда морфолого-физиологических классификаций. Так, Warwick R,. Williams P. (1973) выделяют три класса волокон: А, В и С. А-волокна – соматические афферентные и афферентные миелинизированные нервные волокна, В-волокна – миелинизированные преганглионарные вегетативные волокна, С-волокна – немиелинизированные вегетативные и сенсорные волокна. А. Paintal (1973) модифицировал эту кассификацию с учетом функциональных особенностей волокон, их размеров и скорости проведения импульсов.

Класс А (миелинизированные волокна), афферентные, сенсорные.

Группа I. Волокна размером более 20 мкм в диаметре, со скоростью проведения импульса до 100 м/сек. Волокна этой группы несут импульсы от рецепторов мышц (мышечных веретен, интрафузальных мышечных волокон) и рецепторов сухожилий.

Группа II.

Волокна размером от 5 до 15 мкм в диаметре, со скоростью проведения импульсов от 20 до 90 м/сек. Эти волокна несут импульсы от механорецепторов и вторичных окончаний на мышечных веретенах интрафузальных мышечных волокон.

Группа III. Волокна размером от 1 до 7 мкм в диаметре, со скоростью проведения импульса от 12 до 30 м/сек. Функцией этих волокон является болевая рецепция, а также иннервация волосяных рецепторов и сосудов.

Класс А (миелинизированные волокна), эфферентные, двигательные.

Альфа-волокна. Более 17 мкм в диаметре, скорость проведения импульса от 50 до 100 м/сек. Они иннервируют экстрафузальные поперечнополосатые мышечные волокна, преимущественно стимулируя быстрые сокращения мышц (мышечные волокна 2-го типа) и крайне незначительно – медленные сокращения (мышц 1-го типа).

Бета-волокна. В отличие от альфа-волокон иннервируют мышечные волокна 1-го типа (медленные и тонические сокращения мышц) и частично интрафузальные волокна мышечного веретена.

Гамма-волокна. Размером 2-10 мкм в диаметре, скорость проведения импульса 10-45 см/сек, иннервирует только интрафузальные волокна, т. е. мышечное веретено, тем самым участвуя в спинальной саморегуляции мышечного тонуса и движений (кольцевая связь гамма-петли).

Класс В – миелинизированные преганглионарные вегетативные.

Это небольшие нервные волокна, около 3 мкм в диаметре, со скоростью проведения импульса от 3 до 15 м/сек.

Класс С – немиелинизированные волокна, размерами от 0,2 до 1,5 мкм в диаметре, со скоростью проведения импульса от 0,3 до 1,6 м/сек. Этот класс волокон состоит из постганглионарных вегетативных и эфферентных волокон, преимущественно воспринимающих (проводящих) болевые импульсы

Очевидно, что эта классификация интересует и клиницистов, помогая понять некоторые особенности эфферентной и сенсорной функций нервного волокна, в том числе закономерности проведения нервных импульсов, как в норме, так и при различных патологических процессах.

Электрофизиологические исследования показывают, что в состоянии покоя существует разница в электрическом потенциале на внутренней и внешней сторонах неврональной и аксональной клеточной мембраны. Внутренняя часть клетки имеет отрицательный разряд 70-100 мВ по отношению к интерстициальной жидкости снаружи клетки. Этот потенциал поддерживается различием в концентрации ионов. Калий (и белки) преобладают внутри клетки, в то время как ионы натрия и хлориды имеют более высокую концентрацию вне клетки. Натрий постоянно диффундирует в клетку, а калий имеет тенденцию выходить из нее. Дифференциал концентрации натрий-калий поддерживается путем энергозависимого насосного механизма в покоящейся клетке, причем это равновесие существует при слегка сниженной концентрации положительно заряженных ионов внутри клетки, чем снаружи от нее. Это приводит к отрицательному внутриклеточному заряду. Ионы кальция также вносят вклад в поддержание равновесия в клеточной мембране, и когда их концентрация снижается, возбудимость нерва нарастает.

Под влиянием естественной или вызванной внешними факторами стимуляции аксона происходит нарушение селективной проницаемости клеточной мембраны, что способствует проникновению ионов натрия в клетку и редукции потенциала покоя. Если мембранный потенциал снижается (деполяризуется) до критического уровня (30-50 мВ), то возникает потенциал действия и импульс начинает распространяться вдоль клеточной мембраны как волна деполяризации. Важно отметить, то в немиелинизированных волокнах скорость распространения импульса прямо пропорциональна диаметру аксона,

и возбуждение длительно прямолинейно захватывает соседствующие мембраны.

Проведение же импульса в миелинизированных волокнах совершается «сальтаторно», т. е. как бы скачкообразно: импульс или волна деполяризации мембраны скользит от одного перехвата Ранвье до другого и так далее. Миелин действует как изолятор и предупреждает возбуждение мембраны клетки аксона, за исключением промежутков на уровне перехватов (узлов) Ранвье. Нарастание проницаемости возбужденной мембраны этого узла для ионов натрия вызывает ионные потоки, которые и являются источником возбуждения в области следующего перехвата Ранвье. Таким образом, в миелинизированых волокнах скорость проведения импульса зависит не только от диаметра аксона и толщины миелинового футляра, но и от дистанции между узлами Ранвье, от «интернодальной» длины.

Большинство нервов имеет смешанный состав нервных волокон по их диаметру, степени миелинизации (миелинизированные и немиелинизированные волокна), включение вегетативных волокон, дистанциям между перехватами Ранвье, и поэтому каждый нерв имеет свой, смешанный (сложный) потенциал действия и суммированную скорость проведения импульса. Например, у здоровых лиц скорость проведения по нервному стволу, измеренная при накожном наложении электродов, варьирует от 58 до 72 м/сек для лучевого нерва и от 47 до 51 м/сек для малоберцового нерва (M. Smorto, J. Basmajian, 1972).

Информация, передаваемая по нерву, распространяется не только стереотипными электрическими сигналами, но и с помощью химических передатчиков нервного возбуждения – медиаторов или трансмиттеров, освобождаемых в местах соединения клеток – синапсах. Синапсы – специализированные контакты, через которые осуществляется поляризованная, опосредованная химически, передача из нейрона возбуждающих или тормозящих влияний на другой клеточный элемент. В дистальной, терминальной части нервное волокно лишено миелина, образуя терминальную арборизацию (телодендрон) и пресинаптический терминальный элемент. Этот элемент морфологически характеризуется расширением окончания аксона, что напоминает булаву и нередко именуется как пресинаптический мешок, терминальная бляшка, бутон, синаптический узелок. Под микроскопом в этой булаве можно увидеть различных размеров (около 500 А) гранулярные пузырьки или синаптические везикулы, содержащие медиаторы (например, ацетилхолин, катехоламины, пептидные гормоны и др.).

Подмечено, что присутствие круглых пузырьков отвечает возбуждению, а плоских – торможению синапса. Под терминальной бляшкой лежит синаптическая щель размерами 0,2-0,5 мкм в поперечнике, в которую из везикул поступают кванты медиатора. Затем следует субсинаптическая (постсинаптическая) мембрана, воздействуя на которую химический передатчик вызывает изменения электрического потенциала в подлежащих клеточных элементах.

Можно назвать по крайней мере две главные функции нейрона. Одна из них – поддержание собственной функциональной и морфологической целостности и тех клеток организма, которые данным нейроном иннервируется. Эту функциональную роль нередко обозначают как трофическую. Вторая функция представлена сочетанием механизмов, дающих начало возбуждению, его распространению и целенаправленной деятельности по интеграции с другими функционально-морфологическими системами. Метаболическая зависимость аксона от тела клетки (перикариона) была продемонстрирована еще в 1850 году, Валлером, когда после пересечения нерва наступала дегенерация в его дистальной части («валлеровское перерождение»). Уже само по себе это указывает на то, что в теле нейрона имеется источник клеточных компонентов, вырабатываемых нейронным перикарионом и направляемых вдоль аксона к его дистальному концу.

Сказанное относится не только к выработке и продвижению по нейрону к симпатической щели ацетилхолина и других медиаторов. Электронномикроскопическая и радиоизотопная техника позволила уточнить и новые особенности центрифугального аксоплазматического транспорта. Оказалось, что клеточные органеллы, такие как митохондрии, лизосомы и везикулы передвигаются по аксону с медленной скоростью 1-3 мм в день, в то время как отдельные белки – 100 мм в день. Гранулы, аккумулирующие катехоламины, в симпатических волокнах двигаются со скоростью от 48 до 240 мм в день, а нейросекреторные гранулы по гипоталамо-гипофизарному тракту – 2800 мм в день. Имеются доказательства и ретроградного аксоплазматического транспорта. Такой механизм обнаружен по отношению к вирусам а простого, возбудителям а и а.

Кровеносные сосуды нервов являются ветвями близрасположенных сосудов. Подходящие к нерву артерии разделяются на восходящую и нисходящую ветви, которые распространяются по нерву. Артерии нервов анастомозируют между собой, образуя непрерывную сеть по ходу всего нерва. Наиболее крупные сосуды расположены в наружном эпиневрии. От них отходят ветви в глубину нерва и проходят в нем между пучками в рыхлых прослойках внутреннего эпиневрия. От этих сосудов ветви проходят к отдельным пучкам нерва, располагаясь в толще периневральных влагалищ. Тонкие ветви этих периневральных сосудов расположены внутри пучков нервных волокон в прослойках эндоневрия (эндоневральные сосуды). Артериолы и прекапилляры вытянуты по ходу нервных волокон, располагаясь между ними.

По ходу седалищного и срединного нерва обычно расположены заметные и достаточно длинные артерии (артерия седалищного нерва, артерия срединного нерва). Эти собственные артерии нервов анастомозируют с ветвями близрасположенных сосудов.

Количество источников кровоснабжения каждого нерва индивидуально различно. Большей или меньшей величины артериальные веточки подходят к крупным нервам через каждые 2-10 см. В связи с этим выделение нерва из окружающей его околонервной клетчатки в какой-то мере сопряжено с повреждением подходящих к нерву сосудов.

Микроваскулярное кровоснабжение нерва, исследованное прижизненным микроскопическим методом показало, что обнаруживаются эндоневральные анастомозы между сосудами в различных слоях нерва. При этом преобладает наиболее развитая сеть внутри нерва. Изучение эндоневрального кровотока имеет большое значение как показатель степени повреждения нерва, при этом кровоток претерпевает немедленные изменения даже при слабой компрессии в эксперименте на животных и на людях, производимой на поверхности нерва или же если компремируются экстраневральные сосуды. При такой экспериментальной компрессии только часть глубокорасположенных в нерве сосудов сохраняют нормальный кровоток (Lundborg G,. 1988).

Вены нервов формируются в эндоневрии, периневрии и эпиневрии. Наиболее крупными венами являются эпиневральные. Вены нервов впадают в близрасположенные вены. Следует отметить, что при затруднениях венозного оттока вены нервов могут расширяться, образуя ные узлы.

Лимфатические сосуды нерва. В эндоневрии и в периневральных футлярах имеются лимфатические щели. Они находятся в связи с лимфатическими сосудами в эпиневрии. Отток лимфы от нерва происходит по лимфатическим сосудам, тянущимся в эпиневрии вдоль нервного ствола. Лимфатические сосуды нерва впадают в близрасположеные крупные лимфатические протоки, которые идут к регионарным лимфатическим узлам. Межтканевые эндоневральные щели, пространства периневральных влагалищ являются путями перемещения внутритканевой жидкости.

К периферическим нервам относят черепные и спинномозговые нервы, соединяющие центральную нервную систему (ЦНС) с периферическими органами и тканями. Спинномозговые нервы формируются при слиянии вентральных (передних) и дорсальных (задних) нервных корешков в месте их выхода из позвоночного канала. Задние нервные корешки образуют утолщения - спинальные ганглии (или задние корешковые ганглии). Спинномозговые нервы относительно короткие - их длина составляет менее 1 см. Проходя через межпозвоночное отверстие, спинномозговые нервы делятся на вентральную (переднюю) и дорсальную (заднюю) ветви.

Задняя ветвь обеспечивает иннервацию мышц, выпрямляющих позвоночник, а также кожи туловища в этой области. Передняя ветвь иннервирует мышцы и кожу передней части туловища; кроме того, от нее отходят чувствительные волокна к париетальной плевре и париетальной брюшине.

Передняя ветвь также дает начало ветвям шейного, плечевого и пояснично-крестцового нервных сплетений. Таким образом, значение понятия «ветвь» может изменяться в зависимости от контекста. (Подробное описание нервных сплетений представлено в главах, посвященных анатомии.)

Грудной сегмент спинного мозга и нервные корешки.
Стрелками указано направление проведения импульса. Зеленым цветом обозначено симпатическое нервное волокно.

Периферические нейроны частично расположены в ЦНС. Двигательные (эфферентные) нервные волокна, иннервирующие скелетную мускулатуру, начинаются от мультиполярных а- и у-нейронов, расположенных в переднем роге серого вещества. Строение этих нейронов соответствует общим принципам, характерным для мотонейронов. Более подробная информация представлена в отдельной статье на сайте. Задние нервные корешки берут начало от униполярных нейронов, тела которых расположены в спинальных ганглиях, а чувствительные (афферентные) центральные отростки входят в задний рог серого вещества спинного мозга.

В состав спинномозгового нерва входят соматические эфферентные нервные волокна, направляющиеся к скелетной мускулатуре туловища и конечностей, и соматические афферентные нервные волокна, проводящие возбуждение от кожи, мышц и суставов. Кроме того, в спинномозговом нерве расположены висцеральные эфферентные и, в некоторых случаях, афферентные вегетативные нервные волокна.

Общие принципы внутреннего строения периферических нервов схематично изображены на рисунке ниже. Только лишь по строению нервных волокон невозможно определить, являются они двигательными или чувствительными.

Периферические нервы окружены эпиневрием - внешним слоем, состоящим из плотной неравномерной соединительной ткани и располагающимся вокруг пучков нервных волокон и сосудов, кровоснабжающих нерв. Нервные волокна периферических нервов могут переходить из одного пучка в другой.

Каждый пучок нервных волокон покрыт периневрием, представленным несколькими отчетливо различимыми эпителиальными слоями, связанными плотными щелевидными соединениями. Отдельные шванновские клетки окружены эндоневрием, образованным ретикулярными коллагеновыми волокнами.

Менее половины нервных волокон покрыто миелиновой оболочкой. Немиелинизированные нервные волокна расположены в глубоких складках шванновских клеток.

Понятие «нервное волокно», как правило, применяют при описании проведения нервного импульса; в этом контексте оно заменяет термин «аксон». Миелинизированные нервные волокна представляют собой аксоны, окруженные концентрически расположенными слоями (пластинками) миелина, образованными плазматическими мембранами шванновских клеток. Немиелинизированные нервные волокна окружены отдельными немиелинизируюгцими шванновскими клетками; плазматическая мембрана этих клеток - нейролемма - одновременно покрывает несколько немиелинизированных нервных волокон (аксонов). Структура, образованная таким аксоном и шванновской клеткой, получила название «ганглий Ремака».


Строение грудного спинномозгового нерва. Обратите внимание: на рисунке не указан симпатический компонент.
КП - концевая пластинка двигательного нерва на мышце; НОМВ - нервное окончание мышечного веретена; МН - мультиполярный .

а) Образование миелина . Шванновские клетки (леммоциты) - представители нейроглиальных клеток периферической нервной системы. Эти клетки образуют непрерывную цепочку вдоль периферических нервных волокон. Каждая шванновская клетка миелинизирует участок нервного волокна длиной от 0,3 до 1 мм. Видоизменяясь, шванновские клетки образуют в спинальных и вегетативных ганглиях сателлитные глиоциты, а в области нервно-мышечных соединений - клетки телоглии.

В процессе миелинизации аксона одновременно участвуют все окружающие его шванновские клетки. Каждая шванновская клетка оборачивается вокруг аксона, образуя «дупликатуру» плазматической мембраны,-мезаксон. Мезаксон поступательно смещается, накручиваясь на аксон. Последовательно формирующиеся слои плазматической мембраны располагаются друг напротив друга и, «вытесняя» цитоплазму, образуют главную (крупную) и межпромежуточную (мелкую) плотные линии миелиновой оболочки.

В области конечных участков миелинизированных сегментов аксона по обеим сторонам от перехватов Ранвье (промежутков между конечными участками соседних шванновских клеток) расположены паранодальные карманы.


Поперечный срез нервного ствола.
(А) Световая микроскопия. (Б) Электронная микроскопия.
Миелинизация в периферической нервной системе.
Стрелками указано направление накручивания цитоплазмы шванновской клетки.

1. Миелин ускоряет проведение импульсов . По аксонам немиелинизированных нервных волокон проведение импульса осуществляется непрерывно со скоростью около 2 м/с. Поскольку миелин выполняет функцию электроизолятора, возбудимая мембрана миелинизированных нервных волокон ограничена перехватами Ранвье. В связи с этим возбуждение распространяется от одного перехвата к другому сальтаторно - «скачкообразно», обеспечивая значительно большую скорость проведения нервного импульса, достигающую значений 120 м/с. Количество импульсов, проводимых за секунду, значительно выше у миелинизированных нервных волокон по сравнению с немиелинизированными.

Следует отметить, что чем крупнее миелинизированное нервное волокно, тем длиннее его межузловые сегменты, в связи с чем нервные импульсы, «делая большие шаги», распространяются с большей скоростью. Для описания зависимости между размером нервного волокна и скоростью проведения импульсов можно использовать «правило шести»: скорость распространения нервных импульсов по волокну, диаметр которого составляет 10 нм (включая толщину миелинового слоя), составляет 60 м/с, а по волокну диаметром 15 нм - 90 м/с и т. д.

С точки зрения физиологии периферические нервные волокна классифицируют по скорости проведения нервных импульсов, а также по другим критериям. Двигательные нервные волокна разделяют на типы А, В и С в соответствии с уменьшением скорости проведения импульсов. Чувствительные нервные волокна разделяют на группы I-IV по такому же принципу. Однако на практике эти классификации взаимозаменяемы: так, например, немиелинизированные чувствительные нервные волокна относят не к типу С, а к группе IV.

Подробная информация о диаметрах и местах локализации периферических нервных волокон представлена в таблицах ниже.


На электронно-микроскопическом изображении показаны миелинизированное периферическое нервное волокно и окружающая его шванновская клетка. На рисунках ниже представлена группа немиелинизированных нервных волокон, погруженных в цитоплазму шванновской клетки и продемонстрирован участок перехвата Ранвье аксона ЦНС.

б) Область перехода центральной нервной системы в периферическую нервную систему . В области моста мозга и спинного мозга периферические нервы входят в переходную зону между центральной и периферической нервной системой. Отростки астроцитов из ЦНС погружаются в эпиневрий корешков периферических нейронов и «переплетаются» со шванновскими клетками. Астроциты немиелинизированных волокон погружаются в пространство между аксонами и шванновскими клетками. Перехваты Ранвье миелинизированных нервных волокон в периферической части окружаются миелином шванновских клеток (демонстрируя некоторые переходные свойства), а в центральной части - миелином олигодендроцитов.

в) Резюме . Стволы спинномозговых нервов проходят в межпозвоночных отверстиях. Эти структуры образуются при соединении вентральных (двигательных) и дорсальных (чувствительных) нервных корешков и разделяются на смешанные вентральные и дорсальные ветви. Нервные сплетения конечностей представлены вентральными ветвями.

Периферические нервы покрыты эпиневральной соединительной тканью, пучковидной периневральной оболочкой и эндоневрием, образованным коллагеновыми волокнами и содержащим шванновские клетки. Миелинизированное нервное волокно включает аксон, миелиновую оболочку и цитоплазму шванновской клетки - нейролемму. Миелиновые оболочки формируются шванновскими клетками и обеспечивают сальтаторное проведение импульсов со скоростью, прямо пропорциональной диаметру нервного волокна.



а - Миелинизированное нервное волокно. Десять слоев миелина окружают аксон от внешнего к внутреннему мезаксону шванновской клетки (указано стрелками). Базальная мембрана окружает шванновскую клетку.
б - Немиелинизированные нервные волокна. Девять немиелинизированных волокон погружены в цитоплазму шванновской клетки. Мезаксоны (некоторые указаны стрелками) визуализируются при полном погружении аксонов.
Два неполностью погруженных аксона (сверху справа) покрыты базальной мембраной шванновской клетки.
Область перехвата Ранвье ЦНС. Доходя до области перехвата Ранвье, миелиновая оболочка сужается и заканчивается, закручиваясь в области паранодальных карманов цитоплазмы олигодендроцита.
Длина области перехвата Ранвье составляет около 10 нм; на этом участке отсутствует базальная мембрана.
Микротрубочки, нейрофиламенты и удлиненные цистерны гладкой эндоплазматической сети (ЭПС) формируют продольные пучки.

Область перехода центральной нервной системы (ЦНС) в периферическую нервную систему (ПНС).

Представляет собой организованный набор клеток, специализирующихся на проведении электрических сигналов.

Нервная система состоит из нейронов и глиальных клеток. Функция нейронов заключается в координации действий с помощью химических и электрических сигналов, посылаемых из одного места в другое в организме. Большинство многоклеточных животных имеют нервные системы с похожими основными характеристиками.

Содержание:

Нервная система захватывает стимулы из окружающей среды (внешние стимулы) или сигналы от одного и того же организма (внутренние стимулы), обрабатывает информацию и генерирует различные реакции в зависимости от ситуации. В качестве примера мы можем рассмотреть животное, которое через клетки, чувствительные к свету сетчатки, улавливает близость другого живого существа. Эта информация передается зрительным нервом в мозг, который обрабатывает его и излучает нервный сигнал, и вызывает сокращение определенных мышц через двигательные нервы, чтобы двигаться в направлении, противоположном потенциальной опасности.

Функции нервной системы

Нервная система человека контролирует и регулирует большинство функций организма, от раздражителей через сенсорные рецепторы до моторных действий.

Она состоит из двух основных частей: центральной нервной системы (ЦНС) и периферической нервной системы (ПНС). ЦНС состоит из мозга и спинного мозга.

ПНС образована нервами, которые соединяют ЦНС с каждой частью тела. Нервы, передающие сигналы из мозга, называются двигательными или эфферентными нервами, а нервы, передающие информацию от тела к ЦНС, называются сенсорными или афферентными.

На клеточном уровне нервная система определяется наличием клеточного типа, называемого нейроном, также известным как «нервная клетка». Нейроны имеют специальные структуры, которые позволяют им быстро и точно отправлять сигналы другим клеткам.

Связи между нейронами могут образовывать цепи и нейронные сети, которые генерируют восприятие мира и определяют поведение. Наряду с нейронами нервная система содержит другие специализированные клетки, называемые глиальными клетками (или просто глиями). Они обеспечивают структурную и метаболическую поддержку.

Неисправность нервной системы может возникать в результате генетических дефектов, физического повреждения, вследствие травмы или токсичности, инфекции или просто путем старения.

Структура нервной системы

Нервная система (НС) состоит из двух хорошо дифференцированных подсистем, с одной стороны центральной нервной системы, а с другой — периферической нервной системы.

Видео: Нервная система человека. Введение: основные понятия, состав и строение


На функциональном уровне периферическая нервная система (ПНС) и соматическая нервная система (СНС) дифференцируются в периферической нервной системе. СНС участвует в автоматическом регулировании внутренних органов. ПНС отвечает за захват сенсорной информации и разрешение добровольных движений, таких как рукопожатие или письмо.

Периферическая нервная система состоит в основном из следующих структур: ганглии и черепных нервов.

Вегетативная нервная система


Вегетативная нервная система

Вегетативная нервная система (ВНС) разделена на симпатическую и парасимпатическую системы. ВНС участвует в автоматическом регулировании внутренних органов.

Вегетативная нервная система вместе с нейроэндокринной системой отвечают за регулирование внутреннего баланса нашего организма, снижение и повышение уровня гормонов, активацию внутренних органов и т. д.

Для этого она передает информацию от внутренних органов в ЦНС через афферентные пути и излучает информацию от ЦНС к мускулатуре.

Она включает сердечную мускулатуру, гладкую кожу (которая снабжает волосяные фолликулы), гладкость глаз (которая регулирует сокращение и расширение зрачка), гладкость кровеносных сосудов и гладкость стенок внутренних органов (желудочно-кишечная система, печень, поджелудочная железа, респираторная система, репродуктивные органы, мочевой пузырь …).

Эфферентные волокна организованы, образуя две различные системы, называемые симпатической и парасимпатической системой.

Симпатическая нервная система в основном ответственна за то, чтобы подготовить нас к действию, когда мы ощущаем значительный стимул, активируя одну из автоматических реакций (например убегать или атаковать).

Парасимпатическая нервная система , в свою очередь, поддерживает оптимальную активацию внутреннего состояния. Увеличение или уменьшение активации по мере необходимости.

Соматическая нервная система

Соматическая нервная система отвечает за захват сенсорной информации. Для этой цели она использует сенсорные датчики, распределенные по всему телу, которые распределяют информацию в ЦНС и таким образом переносят от ЦНС на мышцы и органы.

С другой стороны, это часть периферической нервной системы, связанная с добровольным контролем телесных движений. Она состоит из афферентных или сенсорных нервов, эфферентных или двигательных нервов.

Афферентные нервы ответственны за передачу ощущения организма центральной нервной системе (ЦНС). Эфферентные нервы отвечают за отправку сигналов от ЦНС на тело, стимулируя сокращение мышц.

Соматическая нервная система состоит из двух частей:

  • Спинномозговые нервы: появляются из спинного мозга и состоят из двух ветвей: чувствительного афферента и другого эфферентного двигателя, поэтому это смешанные нервы.
  • Черепные нервы: посылает сенсорную информацию с шеи и головы в центральную нервную систему.

Затем оба объясняются:

Черепная нервная система

Есть 12 пар черепных нервов, которые возникают из головного мозга и ответственны за передачу сенсорной информации, контроль над некоторыми мышцами и регулирование некоторых желез и внутренних органов.

I. Ольфакторный нерв. Он получает обонятельную сенсорную информацию и переносит ее на обонятельную луковицу, расположенную в мозге.

II. Оптический нерв. Он получает визуальную сенсорную информацию и передает ее в мозговые центры зрения через зрительный нерв, проходя через хиазм.

III. Внутренний окулярный моторный нерв. Он отвечает за контроль движений глаз и регулирование дилатации и сокращения зрачка.

IV Внутривенно- трехолевый нерв. Он отвечает за контроль движений глаз.

V. Тригеминальный нерв. Он получает соматосенсорную информацию (например, тепло, боль, текстуру …) от сенсорных рецепторов лица и головы и контролирует мышцы жевания.

VI. Наружный моторный нерв глазного нерва. Контроль движений глаз.

VII. Лицевой нерв. Получает информацию о вкусе языка (те, что расположены в средней и предыдущей частях) и соматосенсорная информация о ушах, и контролирует мышцы, необходимые для выполнения мимики.

VIII. Вестибулокохлеарный нерв. Получает слуховую информацию и контролирует баланс.

IX. Глоссафоаргиальный нерв. Получает информацию о вкусе из самой задней части языка, соматосенсорную информацию о языке, миндалинах, глотке и контролирует мышцы необходимые для проглатывания (глотания).

Х. Вагусный нерв. Получает конфиденциальную информацию от желез пищеварения и частоты сердечных сокращений и отправляет информацию органам и мышцам.

XI. Спинной аксессуарный нерв. Управляет мышцами шеи и головы, которые используются для движения.

XII. Гипоглоссальный нерв. Контролирует мышцы языка.

Спинномозговые нервы соединяют органы и мышцы спинного мозга. Нервы отвечают за передачу информации о сенсорных и висцеральных органах в мозг и передают приказы костного мозга на скелетную и гладкую мускулатуру и железы.

Эти соединения управляют рефлекторными действиями, которые выполняются так быстро и бессознательно, потому что информация не должна обрабатываться мозгом до выдачи ответа, она напрямую контролируется мозгом.

Всего имеется 31 пара спинномозговых нервов, которые выходят в двухстороннем порядке из костного мозга через пространство между позвонками, называемыми внутрипозвонковыми отверстиями.

Центральная нервная система

Центральная нервная система состоит из мозга и спинного мозга.

На нейроанатомическом уровне в ЦНС можно выделить два типа веществ: белый и серый. Белое вещество образовано аксонами нейронов и структурного материала, а серое вещество образовано нейронной сомой, где расположен генетический материал.

Это различие является одним из оснований, на которых основан миф, в котором мы используем только 10% нашего мозга, поскольку мозг состоит из примерно 90% белого вещества и всего 10% серого вещества.

Но хотя серое вещество, по-видимому, состоит из материала, который только служит для соединения, сегодня известно, что число и способ, с помощью которых производятся соединения, заметно влияют на функции мозга, поскольку, если структуры находятся в идеальном состоянии, но между ними нет связей, они не будут работать правильно.

Мозг состоит из множества структур: коры головного мозга, базальных ганглиев, лимбической системы, промежуточного мозга, ствола и мозжечка.


Кора головного мозга

Кору головного мозга можно разделить анатомически на доли, разделенные бороздками. Наиболее признанными являются лобные, теменные, временные и затылочные, хотя некоторые авторы утверждают, что есть также лимбическая доля.

Кора делится на два полушария, правого и левого, так что половинки присутствуют симметрично в обоих полушариях, с правой лобной долей и левой долей, правой и левой теменной долей и т. д.

Полушария головного мозга разделены межполушарной трещиной, а доли разделены различными канавками.

Кору головного мозга также можно отнести к функциям сенсорной коры, коры ассоциации и лобных долей.

Сенсорная кора получает сенсорную информацию от таламуса, которая получает информацию через сенсорные рецепторы, за исключением первичной обонятельной коры, которая получает информацию непосредственно от сенсорных рецепторов.

Соматосенсорная информация достигает первичной соматосенсорной коры, расположенной в теменной доле (в постцентральной извилине).

Каждая сенсорная информация достигает определенной точки коры, образующей чувственный гомункул.

Как видно, области мозга, соответствующие органам, не соответствуют тому же порядку, в котором они расположены в организме и они не имеют пропорционального отношения размеров.

Крупнейшими корковыми областями, по сравнению с размерами органов, являются руки и губы, так как в этой области мы имеем высокую плотность сенсорных рецепторов.

Визуальная информация достигает первичной зрительной коры головного мозга, расположенной в затылочной доле (в бороздке) и эта информация имеет ретинотопическую организацию.

Первичная слуховая кора находится в височной доле (область 41 Бродмана), ответственная за получение слуховой информации и создание тонотопической организации.

Первичная кора вкуса расположена в передней части крыльчатки и в передней оболочке, а обонятельная кора расположена в коре пириформ.

Кора ассоциации включает первичный и вторичный. Первичная корковая ассоциация находится рядом с сенсорной корой и объединяет все характеристики воспринимаемой сенсорной информации, такие как цвет, форма, расстояние, размер и т. д. визуального стимула.

Корень вторичной ассоциации находится в теменной крышечке и обрабатывает интегрированную информацию, чтобы отправить ее в более «продвинутые» структуры, такие как лобные доли. Эти структуры помещают ее в контекст, дают ей смысл и делают ее сознательной.

Лобные доли, как мы уже упоминали, отвечают за обработку информации высокого уровня и интеграцию сенсорной информации с двигательными действиями, которые выполняются так, чтобы они соответствовали воспринимаемым стимулом.

Кроме того, они выполняют ряд сложных, обычно человеческих задач, называемых исполнительными функциями.

Базальные ганглии

Базальные ганглии (от греческого ганглия, «конгломерат», «узел», «опухоль») или базальные ядра представляют собой группу ядер или масс серого вещества (скопления тел или нейронных клеток), которые находятся у основания мозга между восходящими и нисходящими путями белого вещества и верхом на стволе мозга.

Эти структуры связаны друг с другом и вместе с корой головного мозга и ассоциацией через таламус, их основная функция — контролировать произвольные движения.

Лимбическая система образована подкорковыми структурами, то есть ниже коры головного мозга. Среди подкорковых структур, которые это делают, выделяется миндалина, а среди кортикальных — гиппокамп.

Амигдала имеет миндалевидную форму и состоит из ряда ядер, которые испускают и получают афференты и выводы из разных регионов.


Эта структура связана с несколькими функциями, такими как эмоциональная обработка (особенно негативные эмоции) и ее влияние на процессы обучения и памяти, внимание и некоторые механизмы восприятия.

Гипокамп, или гипокампальное образование, представляет собой кортикальную область, похожую на морского конька (отсюда и название гиппокампа от греческого hypos: лошадь и монстр моря) и сообщается в двух направлениях с остальной частью мозговой коры и с гипоталамусом.


Гипоталамус

Эта структура особенно важна для обучения, поскольку она отвечает за консолидацию памяти, то есть превращение краткосрочной или непосредственной памяти в долгосрочную память.

Промежуточный мозг

Промежуточный мозг расположен в центральной части мозга и состоит в основном из таламуса и гипоталамуса.

Таламус состоит из нескольких ядер с дифференцированными связями, что очень важно при обработке сенсорной информации, поскольку он координирует и регулирует информацию, поступающую из спинного мозга, ствола и самого мозга.

Таким образом, вся сенсорная информация проходит через таламус до достижения сенсорной коры (за исключением обонятельной информации).

Гипоталамус состоит из нескольких ядер, которые широко связаны между собой. В дополнение к другим структурам как центральная нервная система, так и периферическая, таких как кора, спинной мозг, сетчатка и эндокринная система.

Его основная функция заключается в интеграции сенсорной информации с другими типами информации, например, эмоциональной, мотивационной или прошлого опыта.

Ствол мозга расположен между промежуточным мозгом и спинным мозгом. Он состоит из продолговатого мозга, выпуклости и мезенцефалина.

Эта структура получает большую часть периферийной моторной и сенсорной информации, и ее основная функция заключается в интеграции сенсорной и моторной информации.

Мозжечок

Мозжечок находится в задней части черепа и имеет форму небольшого мозга, с корой на поверхности и с белым веществом внутри.

Он получает и интегрирует информацию в основном из коры головного мозга. Его основными функциями являются координация и адаптация движений к ситуациям, а также поддержание баланса.

Спинной мозг

Спинной мозг переходит из мозга во второй поясничный позвонок. Его основная функция заключается в том, чтобы связать ЦНС с СНС, например принимая двигательные команды мозга к нервам, которые иннервируют мышцы, чтобы они дали моторный отклик.

Кроме того, он может инициировать автоматические ответы, получая какую-то очень важную сенсорную информацию такую как укол или жжение.

Министерство здравоохранения Республики Беларусь

УО «Гомельский государственный медицинский университет»

Кафедра нормальной физиологии

Обсуждено на заседании кафедры

Протокол №__________200__года

по нормальной физиологии для студентов 2 курса

Тема: Физиология нейрона.

Время 90 минут

Учебные и воспитательные цели:

Представить информацию о значении нервной системы в организме, строении и функции периферического нерва и синапсов.

ЛИТЕРАТУРА

2. Основы физиологии человека. Под редакцией Б.И.Ткаченко. - С.-Петербург, 1994. - Т.1. - С. 43 - 53; 86 - 107.

3. Физиология человека. Под редакцией Р.Шмидта и Г.Тевса. - М., Мир.- 1996. - Т.1. - С. 26 - 67.

5. Общий курс физиологии человека и животных. Под редакцией А.Д.Ноздрачёва. - М., Высшая школа.- 1991. - Кн. 1. - С. 36 - 91.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧНИЕ

1. Мультимедийная презентация 26 слайдов.

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

Перечень учебных вопросов

Количество выделяемого времени в минутах

Строение, функции нерва.

Периферическая нервная система: черепно-мозговые и спинномозговые нервы, нервные сплетения.

Классификация нервных волокон.

Законы проведения возбуждения по нервам.

Парабиоз по Введенскому.

Синапс: строение, классификация.

Механизмы передачи возбуждения в возбуждающих и тормозных синапсах.

Всего 90 мин

1. Строение, функции нерва.

Значение нервной ткани в организме связано с основными свойствами нервных клеток (нейронов, нейроцитов) воспринимать действие раздражителя, переходить в возбужденное состояние, распространять потенциалы действия. Нервная система осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь организма с окружающей средой. Нервная ткань состоит из нейронов, выполняющих специфическую функцию, и нейроглии, играющей вспомогательную роль, осуществляющей опорную, трофическую, секреторную, разграничительную и защитную функции.

Нервные волокна (отростки нервных клеток, покрытые оболочками) выполняют специализированную функцию-проведение нервных импульсов. Нервные волокна формируют нерв или нервный ствол, состоящий из нервных волокон, заключенных в общую соединительнотканную оболочку. Нервные волокна, проводящие возбуждение от рецепторов в ЦНС, называются афферентными, а волокна, проводящие возбуждение от ЦНС к исполнительным органам, называются эфферентными. Нервы состоят из афферентных и эфферентных волокон.

Все нервные волокна по морфологическому признаку делятся на 2 основные группы: миелиновые и безмиелиновые. Они состоят из отростка нервной клетки, который лежит в центре волокна и называется осевым цилиндром, и оболочки, образованной шванновскими клетками. На поперечном срезе нерва видны сечения осевых цилиндров, нервных волокон и покрывающие их глиальные оболочки. Между волокнами в составе ствола располагаются тонкие прослойки соединительной ткани - эндоневрий, пучки нервных волокон покрыты периневрием, который состоит из слоев клеток и фибрилл. Наружная оболочка нерва - эпиневрий представляет собой соединительную волокнистую ткань, богатую жировыми клетками, макрофагами, фибробластами. В эпиневрий по всей длине нерва поступает большое количество анастомозирующих между собой кровеносных сосудов.

Общая характеристика нервных клеток

Нейрон является структурной единицей нервной системы. В нейроне различаются сома (тело), дендриты и аксон. Структурно-функциональной единицей нервной системы является нейрон, глиальная клетка и питающие кровеносные сосуды.

Функции нейрона

Нейрон обладает раздражимостью, возбудимостью, проводимостью, лабильностью. Нейрон способен генерировать, передавать, воспринимать действие потенциала, интегрировать воздействия с формированием ответа. Нейроны обладают фоновой (без стимуляции) ивызванной (после стимула) активностью.

Фоновая активность может быть:

Единичной - генерация единичных потенциалов действия (ПД) через разные промежутки времени.

Пачковой - генерация серий по 2-10 ПД через 2-5 мс с более продолжительными промежутками времени между пачками.

Групповой - серии содержат десятки ПД.

Вызванная активность возникает:

В момент включения стимула "ON" - нейрон.

В момент выключения " OF" - нейрон.

На включение и на выключение " ON - OF" - нейроны.

Нейроны могут градуально изменять потенциал покоя под влиянием стимула.

Передаточная функция нейрона. Физиология нервов. Классификация нервов.

По строению нервы делятся на миелинизированные (мякотные) и немиелинизированные.

По направлению передачи информации (центр - периферия) нервы подразделяются на афферентные и эфферентные .

Эфферентные по физиологическому эффекту делятся на:

Двигательные (иннервируют мышцы).

Сосудодвигательные (иннервируют сосуды).

Секреторные (иннервируют железы). Нейроны обладают трофической функцией - обеспечивают метаболизм и сохранение структуры иннервируемой ткани. В свою очередь, нейрон, лишившийся объекта иннервации, также погибает.

По характеру влияния на эффекторный орган нейроны делятся на пусковые (переводят ткань из состояния физиологического покоя в состояние активности) икорригирующие (изменяют активность функционирующего органа).

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. СПИННОМОЗГОВЫЕ НЕРВЫ

Строение нервов

Развитие спинномозговых нервов

Образование и ветвление спинномозговых нервов

Закономерности хода и ветвления нервов

Нервная система человека подразделяется на центральную, периферическую и авто-

номную части. Периферическая часть нервной системы представляет собой совокуп-

ность спинномозговых и черепных нервов. К ней относятся образуемые нервами ганглии и сплетения, а также чувствительные и двигательные окончания нервов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, периферическая часть нервной системы объединяет всœе нервные образования, лежащие вне спинного и головного мозга. Такое объединœение в известной мере условно, так как эфферентные волокна, входящие в состав периферических нервов, являются отростками нейронов, тела которых находятся в ядрах спинного и головного мозга. С функциональной точки зрения периферическая часть нервной системы состоит из проводников, соединяющих нервные центры с рецепторами и рабочими органами. Анатомия периферических нервов имеет большое значение для клиники, как основа для диагностики и лечения заболеваний и повреждений этого отдела нервной системы.

Периферические нервы состоят из волокон, имеющих различное строение и неодина-

ковых в функциональном отношении. Учитывая зависимость отналичия или отсутствия миелиновой оболочки волокна бывают миелиновые (мякотные) или безмиелиновые (безмякотные) (Рис. 1). По диаметру миелиновые нервные волокна подразделяются на тонкие (1-4 мкм), средние (4-8 мкм) и толстые (более 8 мкм) (Рис. 2). Существует прямая зависимость между толщиной волокна и скоростью проведения нервных импульсов. В толстых миелиновых волокнах скорость проведения нервного импульса составляет примерно 80-120 м/с, в средних – 30-80 м/с, в тонких – 10-30 м/с. Толстые миелиновые волокна являются преимущественно двигательными и проводниками проприоцептивной чувствительности, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие – болевой. Безмиелиновые волокна имеют небольшой диаметр – 1-4 мкм и проводят импульсы со скоростью 1-2 м/с (Рис. 3). Οʜᴎ являются эфферентными волокнами вегетативной нервной системы.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по составу волокон можно дать функциональную характеристику нерва. Среди нервов верхней конечности наибольшее содержание мелких и средних миелиновых и безмиелиновых волокон имеет срединный нерв, а наименьшее число их входит в состав лучевого нерва, локтевой нерв занимает в этом отношении среднее положение. По этой причине при повреждении срединного нерва бывают особенно выражены болевые ощущения и вегетативные расстройства (нарушения потоотделœения, сосудистые изменения, трофические расстройства). Соотношение в нервах миелиновых и безмиелиновых, тонких и толстых волокон индивидуально изменчиво. К примеру, количество тонких и средних миелиновых волокон в срединном нерве может у разных людей колебаться от 11 до 45%.

Нервные волокна в стволе нерва имеют зигзагообразный (синусоидальный) ход, что

предохраняет их от перерастяжения и создает резерв удлинœения в 12-15% от их первоначальной длины в молодом возрасте и 7-8% – в пожилом возрасте (Рис. 4).

Нервы обладают системой собственных оболочек (Рис. 5). Наружная оболочка, эпинœеврий, покрывает нервный ствол снаружи, отграничивая его от окружающих тканей, и состоит из рыхлой неоформленной соединительной ткани. Рыхлая соединительная ткань эпинœеврия выполняет всœе промежутки между отдельными пучками нервных волокон.

В эпинœеврии в большом количестве находятся толстые пучки коллагеновых волокон,

идущих преимущественно продольно, клетки фибробластического ряда, гистиоциты и жировые клетки. При изучении седалищного нерва человека и некоторых животных установлено, что эпинœеврия состоит из продольных, косых и циркулярных коллагеновых волокон, имеющих зигзагообразный извилистый ход с периодом 37-41 мкм и амплитудой около 4 мкм. Следовательно, эпинœеврия – очень динамичная структура, которая защищает нервные волокна при растяжении и изгибе.

Нет единого мнения о природе эластических волокон эпинœеврия. Одни авторы считают, что в эпинœеврии отсутствуют зрелые эластические волокна, но обнаружены два вида близких к эластину волокон: окситалановые и элауниновые, которые располагаются параллельно оси нервного ствола. Другие исследователи считают их эластическими волокнами. Жировая ткань является составной частью эпинœеврия.

При исследовании черепных нервов и ветвей крестцового сплетения взрослых людей

установлено, что толщина эпинœеврия колеблется в пределах от 18-30 до 650 мкм, но

чаще составляет 70-430 мкм.

Эпинœеврий – в основном питающая оболочка. В эпинœеврии проходят кровеносные и

лимфатические сосуды, vasa nervorum , которые проникают отсюда в толщу нервного

ствола (Рис. 6).

Следующая оболочка, перинœеврий, покрывает пучки волокон, из которых состоит нерв Она является механически наиболее прочной. При световой и электронной

микроскопии установлено, что перинœеврий состоит из нескольких (7-15) слоев плоских клеток (перинœеврального эпителия, нейротелия) толщиной от 0.1 до 1.0 мкм, между которыми располагаются отдельные фибробласты и пучки коллагеновых волокон. Установлено, что пучки коллагеновых волокон имею в перинœеврии плотное расположение и ориентированы как в продольном, так и концентрическом направлениях. Тонкие коллагеновые волокна образуют в перинœеврии двойную спиральную систему. Причем волокна образуют в перинœеврии волнистые сети с периодичностью около 6 мкм. В перинœеврии найдены элауниновые и окситалановые волокна, ориентированные преимущественно продольно, причем первые в основном локализуются в поверхностном его слое, а вторые – в глубоком слое.

Толщина перинœеврия в нервах с многопучковой структурой находится в прямой зависимости от величины покрываемого им пучка: вокруг мелких пучков не превышает 3-5 мкм, крупные пучки нервных волокон покрываются перинœевральным футляром толщиной от 12-16 до 34-70 мкм. Данные электронной микроскопии свидетельствуют, что перинœеврий имеет гофрированную, складчатую организацию. Перинœеврию придается большое значение в барьерной функции и обеспечении прочности нервов. Перинœеврий, внедряясь в толщу нервного пучка, образует там соединительнотканные перегородки толщиной 0.5-6.0 мкм, которые делят пучок на части. Подобная сегментация пучков чаще наблюдается в поздних периодах онтогенеза.

Перинœевральные влагалища одного нерва соединяются с перинœевральными влагали-

щами сосœедних нервов, и через эти соединœения происходит переход волокон из одного нерва в другой. В случае если учесть всœе эти связи, то периферическую нервную систему верхней или нижней конечности можно рассматривать как сложную систему связанных между собой перинœевральных трубок, по которым осуществляется переход и обмен нервных волокон как между пучками в пределах одного нерва, так и между сосœедними нервами. Самая внутренняя оболочка, эндоневрий, покрывает тонким соединительнотканным

футляром отдельные нервные волокна (Рис. 8). Клетки и внеклеточные структуры эн-

доневрия вытянуты и ориентированы преимущественно по ходу нервных волокон. Количество эндоневрия внутри перинœевральных футляров по сравнению с массой нервных волокон невелико.

Нервные волокна сгруппированы в отдельные пучки различного калибра. У разных авторов существуют различные определœения пучка нервных волокон в зависимости от позиции, с которой эти пучки рассматриваются: с точки зрения нейрохирургии и микрохирургии или с точки зрения морфологии. Классическим определœением нервного пучка является группа нервных волокон, ограниченная от других образований нервногоствола перинœевральной оболочкой. И этим определœением руководствуются при исследовании морфологи. При этом при микроскопическом исследовании нервов часто наблюдаются такие состояния, когда несколько групп нервных волокон, прилежащих друг к другу, имеют не только собственные перинœевральные оболочки, но и окружены об-

щим перинœеврием. Эти группы нервных пучков часто бывают видны при макроскопическом исследовании поперечного среза нерва во время нейрохирургического вмешательства. И эти пучки чаще всœего описываются при клинических исследованиях. Из-за различного понимания строения пучка происходят в литературе противоречия при описании внутриствольного строения одних и тех же нервов. В связи с этим ассоциации нервных пучков, окруженные общим перинœеврием, получили название первичных пучков, а более мелкие, их составляющие, – вторичных пучков. На поперечном срезе нервов человека соединительнотканные оболочки (эпинœеврий перинœеврий) занимают значительно больше места (67-84%), чем пучки нервных волокон. Показано, что количество соединительной ткани зависит от числа пучков в нерве.

Ее значительно больше в нервах с большим количеством мелких пучков, чем в нервах с немногими крупными пучками.

Учитывая зависимость отстроения пучков выделяют две крайние формы нервов: малопучко-

вую и многопучковую. Первая характеризуется небольшим количеством толстых пучков и слабым развитием связей между ними. Вторая состоит их множества тонких пучков с хорошо развитыми межпучковыми соединœениями.

Когда количество пучков небольшое, пучки имеют значительные размеры, и наоборот.

Малопучковые нервы отличаются сравнительно небольшой толщиной, наличием не-

большого количества крупных пучков, слабым развитием межпучковых связей, частым расположением аксонов внутри пучков. Многопучковые нервы отличаются большей толщиной и состоят из большого количества мелких пучков, в них сильно развиты межпучковые связи, аксоны располагаются в эндоневрии рыхло.

Толщина нерва не отражает количества содержащихся в нем волокон, и не существует закономерностей расположения волокон на поперечном срезе нерва. При этом установлено, что в центре нерва пучки всœегда тоньше, на периферии – наоборот. Толщина пучка не характеризует количества заключенных в нем волокон.

В строении нервов установлена четко выраженная асимметрия, то есть неодинаковое

строение нервных стволов на правой и левой сторонах тела. К примеру, диафрагмаль-

ный нерв имеет слева большее количество пучков, чем справа, а блуждающий нерв –

наоборот. У одного человека разница в количестве пучков между правым и левым срединными нервами может варьировать от 0 до 13, но чаще составляет 1-5 пучков. Разница в количестве пучков между срединными нервами разных людей равняется 14-29 и с возрастом увеличивается. В локтевом нерве у одного и того же человека разница между правой и левой сторонами в количестве пучков может колебаться от 0 до 12, но чаще составляет также 1-5 пучков. Различие в количестве пучков между нервами разных людей достигает 13-22.

Разница между отдельными субъектами в количестве нервных волокон колеблется в

срединном нерве от 9442 до 21371, в локтевом нерве – от 9542 до 12228. У одного и того же человека разница между правой и левой стороной варьирует в срединном нерве от 99 до 5139, в локтевом нерве – от 90 до 4346 волокон.

Источниками кровоснабжения нервов являются сосœедние близлежащие артерии и их

ветви (Рис. 9). К нерву обычно подходят несколько артериальных ветвей, причем ин-

тервалы между входящими сосудами варьируют в крупных нервах от 2-3 до 6-7 см, а в седалищном нерве – до 7-9 см. Вместе с тем, такие крупные нервы, как срединный и седалищный, имеют собственные сопровождающие артерии. В нервах, имеющих большое количество пучков, в эпинœеврии содержится много кровеносных сосудов, причем они имеют сравнительно малый калибр. Наоборот, в нервах с небольшим количеством пучков сосуды одиночные, но значительно более крупные. Артерии, питающие нерв, в эпинœеврии Т-образно делятся на восходящую и нисходящую ветви. Внутри нервов артерии делятся до ветвей 6-го порядка. Сосуды всœех порядков анастомозируют между собой, образуя внутриствольные сети. Эти сосуды играют значительную роль в развитии коллатерального кровообращения при выключении крупных артерий. Каждая артерия нерва сопровождается двумя венами.

Лимфатические сосуды нервов находятся в эпинœеврии. В перинœеврии между его слоями образуются лимфатические щели, сообщающиеся с лимфатическими сосудами эпинœеврия и эпинœевральными лимфатическими щелями. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по ходу нервов может распространяться инфекция. Из больших нервных стволов обычно выходят несколько лимфатических сосудов.

Оболочки нервов иннервируются ветвями, отходящими от данного нерва. Нервы нервов имеют в основном симпатическое происхождение и по функции являются сосудодвигательными.