Нуклеиновые кислоты представляют собой высокомолекулярные соединения, молекулярная масса которых колеблется от 25 тыс. до 1 млн и более.

Полимерные цепи нуклеиновых кислот построены из мономерных единиц - нуклеотидов, в связи с чем нуклеиновые кислоты назы- вают полинуклеотидами.

Обычно «неделимое» мономерное звено (например, аминокислотный остаток в белках) у нуклеотидов представляет собой трехкомпонентное образование, включающее гетероциклическое основание, углеводный остаток и фосфатную группу.

Углеводными компонентами служат пентозы - D-рибоза и 2-дезокси-э-рибоза. В зависимости от этого нуклеиновые кислоты делятся на рибонуклеиновые (РНК), содержащие рибозу, и дезоксирибо- нуклеиновые (ДНК), содержащие дезоксирибозу.

ДНК содержатся в основном в ядрах клеток, РНК находятся преимущественно в рибосомах, а также протоплазме клеток. РНК непосредственно участвуют в биосинтезе белка.

14.1. Нуклеотиды

14.1.1. Нуклеозиды

В химии нуклеиновых кислот входящие в их состав гетероциклические соединения пиримидинового и пуринового рядов обычно называют нуклеиновыми основаниями.

Нуклеиновые основания в качестве заместителей в гетероцикле могут содержать:

Либо оксогруппу, как в урациле и тимине;

Либо аминогруппу, как в аденине;

Либо одновременно обе эти группы, как в цитозине и гуанине.

Кислородсодержащие основания представлены лактамными таутомерными формами, в которых ароматичность не нарушена (см. 13.4). Для всех оснований приняты сокращенные трехбуквенные обозначения, составленные из первых букв их латинских названий.

Нуклеиновые кислоты различаются входящими в них гетероциклическими основаниями: урацил входит только в РНК, а тимин -

в ДНК:

Нуклеиновые основания образуют связь за счет одного из атомов азота с аномерным центром пентозы (D-рибозы или 2-дезокси-D- рибозы). Этот тип связи аналогичен обычной гликозидной связи и известен как N-гликозидная связь, а сами гликозиды - как N-гликози- ды. В химии нуклеиновых кислот их называют нуклеозидами.

В состав природных нуклеозидов пентозы входят в фуранозной форме (атомы углерода в них нумеруют цифрой со штрихом). Гликозидная связь осуществляется с атомом азота N-1 пиримидинового и N-9 пуринового оснований.

Природные нуклеозиды всегда являются β -аномерами.

В зависимости от природы углеводного остатка различают рибонуклеозиды и дезоксирибонуклеозиды. Для нуклеозидов употребительны названия, производимые от тривиального названия соответствующего нуклеинового основания с суффиксами -идин у пиримидиновых и -озин у пуриновых нуклеозидов.

Исключение составляет название «тимидин» (а не дезокситимидин), используемое для дезоксирибозида тимина, входящего в состав ДНК. В тех редких случаях, когда тимин встречается в РНК, соответствующий нуклеозид называется риботимидином.

Трехбуквенные символы нуклеозидов отличаются от символов оснований последней буквой. Однобуквенные символы применяются только для остатков (радикалов) нуклеозидов в более сложных структурах.

Нуклеозиды устойчивы к гидролизу в слабощелочной среде, но гидролизуются в кислой. Пуриновые нуклеозиды гидролизуются легко, пиримидиновые труднее.

В качестве лекарственных средств в онкологии используют синтетические производные пиримидинового и пуринового рядов, по строению похожие на естественные метаболиты (в данном случае - на нуклеиновые основания), но не полностью им идентичные, т. е. являющиеся антиметаболитами. Например, 5-фторурацил выступает

в роли антагониста урацила и тимина, 6-меркаптопурин - аденина. Конкурируя с метаболитами, они нарушают синтез нуклеиновых кислот в организме на разных этапах.

14.1.2. Нуклеотиды

Нуклеотидами называют фосфаты нуклеозидов. Фосфорная кислота обычно этерифицирует спиртовый гидроксил при С-5" или С-3" в остатке рибозы (рибонуклеотиды) или дезоксирибозы (дезоксирибонуклеотиды).

Общий принцип строения нуклеотидов показан на примере фосфатов аденозина. Для связывания трех компонентов в молекуле нуклеотида используются сложноэфирная и N-гликозидная связи.

Нуклеотиды можно рассматривать, с одной стороны, как эфиры нуклеозидов (фосфаты), а с другой - как кислоты (в связи с наличием остатка фосфорной кислоты).

За счет фосфатного остатка нуклеотиды проявляют свойства двухосновной кислоты и в физиологических условиях при рН ~7 находятся в полностью ионизированном состоянии.

Для нуклеотидов используют два вида названий (табл. 14.1). Одно включает наименование нуклеозида с указанием положения в нем фосфатного остатка, например, аденозин-3"-фосфат, уридин-5"-фос- фат; другое строится с добавлением сочетания -иловая кислота к названию остатка пиримидинового основания, например, 5"-уридило- вая кислота, или пуринового основания, например 3"-адениловая кислота.

Используя принятый для нуклеозидов однобуквенный код, 5"-фосфаты записывают с добавлением латинской буквы «р» перед символом нуклеозида, 3"-фосфаты - после символа нуклеозида. Аденозин-5"-фосфат обозначается рА, аденозин-3"-фосфат - Ар и т. п. Эти сокращенные обозначения используют для записи последовательности нуклеотидных остатков в нуклеиновых кислотах. По отношению к свободным нуклеотидам в биохимической литера-

туре широко используют их названия как монофосфатов с отражением этого признака в сокращенном коде, например АМР (или АМФ) для аденозин-5"-фосфата и т. д. (см. табл. 14.1).

Таблица 14.1. Важнейшие нуклеотиды, входящие в состав нуклеиновых кислот

Циклофосфаты. К ним относятся нуклеотиды, у которых одна молекула фосфорной кислоты этерифицирует одновременно две гидроксильные группы углеводного остатка. Практически во всех клетках присутствуют два нуклеозидциклофосфата - аденозин-3",5"- циклофосфат (cAMP) и гуанозин-3",5"-циклофосфат (cGMP).

14.2. Структура нуклеиновых кислот

14.2.1. Первичная структура

В полинуклеотидных цепях нуклеотидные звенья связаны через фосфатную группу. Фосфатная группа образует две сложноэфирные связи: с С-3" предыдущего и с С-5" последующего нуклеотидных звеньев (рис. 14.1). Каркас цепи состоит из чередующихся пентозных и фосфатных остатков, а гетероциклические основания являются «боковыми» группами, присоединенными к пентозным остаткам. Нуклеотид со свободной 5"-ОН группой называют 5"-концевым, а нуклеотид со свободной З"-ОН группой - З"-концевым.

На рисунке 14.2 приведено строение произвольного участка цепи ДНК, включающего четыре нуклеиновых основания. Легко представить, какое множество сочетаний можно получить путем варьирования последовательности четырех нуклеотидных остатков. Принцип построения цепи РНК такой же, как и у ДНК, с двумя исключениями: пентозным остатком в РНК служит D-рибоза, а в наборе гетероциклических оснований используется не тимин, а урацил.

Первичная структура нуклеиновых кислот определяется последовательностью нуклеотидных звеньев, связанных ковалентными связями в непрерывную цепь полинуклеотида.

Для удобства записи первичной структуры существует несколько способов сокращений. Один из них заключается в использовании ранее приведенных сокращенных названий нуклеозидов. Например, показанный на рис. 14.2 фрагмент цепи ДНК может быть записан

Рис. 14.1. Общий принцип строения полинуклеотидной цепи

Рис. 14.2. Первичная структура участка цепи ДНК

как d(ApCpGpTp...) или d(A-C-G-T...). Часто букву d опускают, если очевидно, что речь идет о ДНК.

Важной характеристикой нуклеиновых кислот служит нуклеотидный состав, т. е. набор и количественное отношение нуклеотидных компонентов. Нуклеотидный состав устанавливают, как правило, путем исследования продуктов гидролитического расщепления нуклеиновых кислот.

ДНК и РНК различаются поведением в условиях щелочного и кислотного гидролиза. ДНК устойчивы к гидролизу в щелочной среде. РНК легко гидролизуются в мягких условиях в щелочной среде до нуклеотидов, которые, в свою очередь, способны в щелочной среде отщеплять остаток фосфорной кислоты с образованием нуклеозидов. Нуклеозиды в кислой среде гидролизуются до гетероциклических оснований и углеводов.

14.2.2. Вторичная структура ДНК

Под вторичной структурой понимают пространственную организацию полинуклеотидной цепи. Согласно модели Уотсона-Крика молекула ДНК состоит из двух полинуклеотидных цепей, правозакрученных вокруг общей оси с образованием двойной спирали. Пуриновые и пиримидиновые основания направлены внутрь спирали. Между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи возникают водородные связи. Эти основа- ния составляют комплементарные пары.

Водородные связи образуются между аминогруппой одного основания и карбонильной группой другого -NH...O=C- , а также между амидным и иминным атомами азота -NH...N-Например, как показано ниже, между аденином и тимином образуются две водородные связи, и эти основания составляют комплементарную пару, т. е. аденину в одной цепи будет соответствовать тимин в другой цепи. Другую пару комплементарных оснований составляют гуанин и цитозин, между которыми возникают три водородные связи.

Водородные связи между комплементарными основаниями - один из видов взаимодействий, стабилизирующих двойную спираль. Две цепи ДНК, образующие двойную спираль, не идентичны, но комплементарны между собой. Это означает, что первичная структура, т. е. нуклеотидная последовательность, одной цепи предопределяет первичную структуру второй цепи (рис. 14.3).

Рис. 14.3. Комплементарность полинуклеотидных цепей в двойной спирали

ДНК

14.3. Нуклеотидные коферменты

Нуклеотиды имеют большое значение не только как строительный материал для нуклеиновых кислот. Они участвуют в биохими- ческих процессах и особенно важны в роли коферментов, т. е. веществ, тесно связанных с ферментами и необходимых для проявления ими ферментативной активности.

14.3.1. Нуклеозидполифосфаты

Во всех тканях организма содержатся моно-, ди- и трифосфаты нуклеозидов. Особенно широко известны аденинсодержащие нук- леотиды - аденозин-5"-фосфат (АМР), аденозин-5"-дифосфат (ADP)

и аденозин-5"-трифосфат (ATP) (для этих соединений наряду с приведенными сокращенными обозначениями латинскими буквами в оте- чественной литературе используют сокращения соответствующих русских названий - АМФ, АДФ, АТФ).

Нуклеотиды, фосфорилированные в разной степени, способны к взаимопревращениям путем наращивания или отщепления фос- фатных групп. Дифосфатная группа содержит одну, а трифосфатная - две ангидридные связи, называемые макроэргическими, поскольку они обладают большим запасом энергии. Необходимые для образования такой связи энергетические затраты восполняются за счет энергии, выделяемой в процессе метаболизма углеводов. При расщеплении макроэргической связи Р~О (обозначаемой волнистой линией) выделяется ~32 кДж/моль. С этим связана важнейшая роль АТФ как «поставщика» энергии во всех живых клетках.

В показанных ниже взаимопревращениях АМФ, АДФ и АТФ формулы этих соединений соответствуют их неионизированному состоянию. В физиологических условиях при рН ~7 фосфатные группы почти полностью ионизированы, поэтому в биохимической литературе эти и любые другие нуклеотиды записывают соответственно в виде анионов.

Нуклеозидполифосфаты в биохимических процессах. С участием АТФ и АДФ в организме осуществляется важнейший биохимический процесс - перенос фосфатных групп. Например, образование сложных эфиров (фосфатов) - типичная реакция в метаболизме углеводов. Все стадии гликолиза (превращения глюкозы в пируват) осуществляются только в фосфатной форме. Получение фосфатов гидроксилсодержа- щих соединений можно представить в виде общей схемы.

Так, галактоза, образующаяся при расщеплении лактозы, на начальной стадии метаболического превращения в глюкозу взаимо- действует с АТФ с образованием монофосфата.

14.3.2. Никотинамиднуклеотиды

Наиболее важными представителями этой группы соединений являются никотинамидадениндинуклеотид (NAD, или в русской литературе НАД) и его фосфат (NADP, или НАДФ). Эти соединения выполняют важную роль коферментов в осуществлении многих

окислительно-восстановительных реакций. В соответствии с этим они могут существовать как в окисленной (НАД+, НАДФ+), так и восстановленной (НАДН, НАДФН) форме.

Структурным фрагментом НАД + и НАДФ + является никотинамидный остаток в виде пиридиниевого катиона. В составе НАДН и НАДФН этот фрагмент превращается в остаток 1,4-дигидропиридина.

В ходе биологического дегидрирования субстрат теряет два атома водорода, т. е. два протона и два электрона (2Н+, 2е) или протон и гидрид-ион (Н+ и Н -). Кофермент НАД+ обычно рассматривается как акцептор гидрид-иона Н - (хотя окончательно не установлено, происходит ли перенос атома водорода к этому коферменту одновременно с переносом электрона или эти процессы протекают раздельно).

В результате восстановления путем присоединения гидрид-иона к НАД+ пиридиниевое кольцо переходит в 1,4-дигидропиридиновый фрагмент. Этот процесс обратим.

В реакции окисления ароматический пиридиниевый цикл переходит в неароматический 1,4-дигидропиридиновый цикл. В связи с потерей ароматичности возрастает энергия НАДН по сравнению с НАД + . Таким способом НАДН запасает энергию, которая затем расходуется в других биохимических процессах, требующих энергетических затрат.

Типичными примерами биохимических реакций с участием НАД+ служат окисление спиртовых групп в альдегидные (например, пре- вращение ретинола в ретиналь, см. 15.4), а с участием НАДН - восстановление карбонильных групп в спиртовые (превращение пировиноградной кислоты в молочную, см. 9.2.3).

Нуклеиновые кислоты. АТФ

Нуклеиновые кислоты (от лат. nucleus – ядро) – кислоты, впервые обнаруженные при исследовании ядер лейкоцитов; были открыты в 1868 г. И.Ф. Мишером, швейцарским биохимиком. Биологическое значение нуклеиновых кислот - хранение и передача наследственной информации; они необходимы для поддержания жизни и для ее воспроизведения.

Нуклеиновые кислоты

Нуклеотид ДНК и нуклеотид РНК имеют черты сходства и различия.

Строение нуклеотида ДНК

Строение нуклеотида РНК

Молекула ДНК – двойная цепь, закрученная по спирали.

Молекула РНК представляет собой одиночную нить нуклеотидов, схожую по строению с отдельной нитью ДНК. Только вместо дезоксирибозы РНК включает другой углевод – рибозу (отсюда и название), а вместо тимина – урацил.

Две нити ДНК соединены друг с другом водородными связями. При этом наблюдается важная закономерность: напротив азотистого основания аденин А в одной цепи располагается азотистое основание тимин Т в другой цепи, а против гуанина Г всегда расположен цитозин Ц. Эти пары оснований называют комплементарными парами.

Таким образом, принцип комплементарности (от лат. complementum – дополнение) состоит в том, что каждому азотистому основанию, входящему в нуклеотид, соответствует другое азотистое основание. Возникают строго определенные пары оснований (А – Т, Г – Ц), эти пары специфичны. Между гуанином и цитозином – три водородные связи, а между аденином и тимином возникают две водородные связи в нуклеотиде ДНК, а в РНК две водородные связи возникают между аденином и урацилом.

Водородные связи между азотистыми основаниями нуклеотидов

Г ≡ Ц Г ≡ Ц

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплементарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).

Таким образом, количественное содержание азотистых оснований в ДНК подчинено некоторым правилам:

1) Сумма аденина и гуанина равна сумме цитозина и тимина А + Г = Ц + Т.

2) Сумма аденина и цитозина равна сумме гуанина и тимина А + Ц = Г + Т.

3) Количество аденина равно количеству тимина, количество гуанина равно количеству цитозина А = Т; Г = Ц.

При изменении условий ДНК, подобно белкам, может подвергаться денатурации, которая называется плавлением.

ДНК обладает уникальными свойствами: способностью к самоудвоению (репликация, редупликация) и способностью к самовосстановлению (репарация). Репликация обеспечивает точное воспроизведение в дочерних молекулах той информации, которая была записана в материнской молекуле. Но в процессе репликации иногда возникают ошибки. Способность молекулы ДНК исправлять ошибки, возникающие в ее цепях, то есть восстанавливать правильную последовательность нуклеотидов, называется репарацией .

Молекулы ДНК находятся в основном в ядрах клеток и в небольшом количестве в митохондриях и пластидах – хлоропластах. Молекулы ДНК – носители наследственной информации.

Строение, функции и локализация в клетке. Различают три вида РНК. Названия связаны с выполняемыми функциями:

Сравнительная характеристика нуклеиновых кислот

Аденозинфосфорные кислоты - аденозинтрифосфорная кислота (АТФ), аденозиндифосфорная кислота (АДФ), аденозинмонофосфорная кислота (АМФ).

В цитоплазме каждой клетки, а также в митохондриях, хлоропластах и ядрах содержится аденозинтрифосфорная кислота (АТФ). Она поставляет энергию для большинства реакций, происходящих в клетке. С помощью АТФ клетка синтезирует новые молекулы белков, углеводов, жиров, осуществляет активный транспорт веществ, биение жгутиков и ресничек.

АТФпо строению сходна с адениновым нуклеотидом, входящим в состав РНК, только вместо одной фосфорной кислоты в состав АТФ входят три остатка фосфорной кислоты.

Строение молекулы АТФ:

Неустойчивые химические связи, которыми соединены молекулы фосфорной кислоты в АТФ, очень богаты энергией. При разрыве этих связей выделяется энергия, которая используется каждой клеткой для обеспечения процессов жизнедеятельности:



АТФ АДФ + Ф + Е

АДФ АМФ + Ф + Е,

где Ф – фосфорная кислота Н3РО4, Е – освобождающаяся энергия.

Химические связи в АТФ между остатками фосфорной кислоты, богатые энергией, называются макроэргическими связями . Отщепление одной молекулы фосфорной кислоты сопровождается выделением энергии – 40 кДж.

АТФ образуется из АДФ и неорганического фосфата за счет энергии, освобождающейся при окислении органических веществ и в процессе фотосинтеза. Этот процесс называется фосфорилированием.

При этом должно быть затрачено не менее 40 кДж/моль энергии, которая аккумулируется в макроэргических связях. Следовательно, основное значение процессов дыхания и фотосинтеза определяется тем, что они поставляют энергию для синтеза АТФ, с участием которой в клетке выполняется большая часть работы.

АТФ чрезвычайно быстро обновляется. У человека, например, каждая молекула АТФ расщепляется и вновь восстанавливается 2 400 раз в сутки, так что ее средняя продолжительность жизни менее 1 мин. Синтез АТФ осуществляется главным образом в митохондриях и хлоропластах (частично в цитоплазме). Образовавшаяся здесь АТФ направляется в те участки клетки, где возникает потребность в энергии.

АТФ играет важную роль в биоэнергетике клетки: выполняет одну из важнейших функций – накопителя энергии, это универсальный биологический аккумулятор энергии.

Доклад

Студенток 1 курса 13 группы Института фзической культуры и спорта

Факультета физической культуры для лиц с отклонениями в состоянии здоровья (адаптивная физическая культура)

Размус Алены

Семеновой Екатерины

по теме: «Нуклеиновые кисллоты».

    Нуклеиновые кислоты. Определение. Открытие. Виды нуклеиновых кислот.

    Нуклеотид. Состав. Строение.

    Правило Чааргафа

    ДНК. Модель Уотсона и Крика. Структура. Состав. Функции.

    РНК. Состав и ее разнообразие.

    ДНК – носитель наследственной информации.

    Краткие итоги.

Нуклеиновые кислоты.

Нуклеиновые кислоты (Нк)биополимеры, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Впервые Нк были описаны в 1868 году швейцарским биохимиком Фридрихом Мишером (1844-1895) .

Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входили N 2 и P. Ученый назвал это вещество нуклеином (лат. nucleus – ядро), полагая, что оно содержится лишь в ядрах клеток. Позднее небелковая часть этого вещства была названа нуклеиновой кислотой .

Нуклеиновые кислоты в природе существут двух типов, различающиеся по составу, строению и функциям. Одна названа ДНК (дизоксирибонуклиновая кислота), а вторая РНК (рибонуклиновая кислота).

Нуклеиновые кислоты – это важнейшие биополимеры, определяющие основные свойства живого.

Нуклеотиды. Состав. Строение.

ДНК – это полимерная молекула, состоящая из десятков тысяч или миллионов мономеров – дезоксирибонуклеотидов .

Определение размеров молекул ДНК стало возможным только после разработки специальных методов: электронной микроскопии, ультрацентрифугирования, электрофореза. При полном гидролизе эти молекулы расщепляются до пуриновых и пеиримидиновых оснований, пятиугольного моносахарида дезоксирибозы и фосфорной кислоты.

Пуриновые основания – производные пурин. Из них в сосатв нуклеиновых кислот входят аденин и гуанин :

Пиримидиновые основания , содержащиеся в нуклеиновых кислотах, - цитозин и тимин в ДНК, цитозин и урацил в РНК – это производные пиримидина:

Тимин отличается от урацила наличием метильной группы (-СН 3). Пуриновые и пиримидиновые основания называются азотистыми основаниями .

При мягком гидролизе нуклеиновых кислот получали соединения, дезоксирибоза которых была связана с пуриновым или пиримидиновым основанием посредством атома N 2 . Подобные соединения получили название нуклеозидов . Нуклеозиды,соединяясь с одной молекулой фосфорной кислоты, образуют более сложные вещества – нуклеотиды . Именно они являются мономерами нуклеиновых кислот ДНК и РНК.

Итак, нуклеотид состояит из остатков азотистого основания, сахара – пентозы и фофорной кислоты.

Правило Эрвина Чааргафа.

Нуклеотидный состав ДНК впервые количественно проанализировал американский биохимик Эрвин Чааргаф , который в 1951 году доказал, что в составе ДНК имеются четыре основания. Э. Чааргаф обнаружил, что у всех изученных им видов количество пуринового основания аденина (А) равно количеству пиримидинового основания тимина (Т) , т.е. А=Т .

Сходным образом количество пуринового основания гуанина (Г) всегда равно количеству пиримидинового основания цитозина (Ц) , т.е. Г=Ц . Таким образом, число пуриновых ДНК всегда равно числу пиримидиновых , т.е. количеству аденина равно количеству имина, а количество гуанина – количеству цитозина. Эта закономерность получило название правила Чааргафа .

Днк. Модель Уотсона и Крика. Структура. Состав. Функции.

В 1950 году английский физик Морис Хью Уилкинс получил рентгенограмму ДНК. Она показала, что молекула ДНК имеет определенную вторичную структуру, расшифровка которой помогла бы понять механизм функционирования ДНК. Рентегонграммы, полученные на высокоочищенной ДНК, позволили Розалинде Франклин , коллеге Уилкинса, увидеть четкий крестообразный рисунок – опознавательный знак двоной спирали. Стало извесно также, что нуклеотиды расположены друг от лруга на растоянии 0, 34 нм, а на один виток спирали их приходится 10. Диаметр молекулы ДНК составляет около 2 нм. Из рентгеноструктурных данных, однако, было неясно, каким образом цепи удерживаются вместе в молекулах ДНК.

Картна полностью прояснилась в 1953 году, когда американский биохимик Джеймс Уотсон и английский физик Фрэнсис Крик, рассмотрев совокупность известных данных о строении ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания – в середине. Причем последние ориентированы таким образом, что между основаниями противоположных цепей могут образовываться водородные связи. Из построенной ими модели выявилось, что пурин в одной цепи всегда связан водородными связями с противолежащим пиримидином в другой цепи.

Такие пары имеют одинаковый размер по всей длинне молекулы. Не менее важно то,что аденин может спариваться лишь с тимином, а гуанин только с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином и цитозином – три.

В каждой из цепей ДНК основания могут чередоваться всеми возможными способами. Если известна последовательность оснований в одной цепи (например, Т – Ц – Г – Ц – А – Т ), то благодаря специфичности спаривания (принцип дополнения, т.е. комплементарности ) становится извсетной и последовательность оснований ее партнера – второй цепи (А – Г – Ц – Г – Т – А ). Противолежащие последовательности и соответствующие полинуклеотидные цепи называют комплементарными . Хотя водородные связи, стабилизирующие пары оснований, относительно слабы, каждая молекула ДНК содержит так много пар, что в физиологических условиях (темпиратура, pH) комплименарные цепи никогда самостоятельно не разделяются.

В начале 50-х годов большая группа ученых под руководством английского ученого А. Тодда установила точную структуру связей, соединяющих нуклеотиды одной цепи. Все эти связи оказались одинаковыми: углеродный атом в 5"-положении остатка дезоксирибозы (цифры со штрихами обозначают углеродные атомы в пятичленном сахаре – рибозе или дизоксирибозе) одного нуклеотида соединяется через фосфатную группу с углеродным атомом в 3’-положени соседнего нуклеотида. Никаких признаков необычных связей обнаружено не было. А. Тодд с сотрудниками пришли к выводу, что полинуклеотидные цепи ДНК, так же как и полипиптидные цепи белка, строго линейные. Регулярно расположенные связи между сахарами и фосфатными группами образуют скелет полинуклеотидной цепи.

Напротив 5"-конца одной цеп находится 3’-конец комплементарной цепи. Такая ориентация цепей названа антипараллельной .

У всех живущих на Земле организмов ДНК представлена двухцепоными спиральными молекулами. Исключение составляют одноцепочные молекулы ДНК некоторых фагов – вирусов, поражающих бактериальные клетки. Эти одноцепочные ДНК всегда кольцевые. Двухцепочные ДНК бывают и кольцевые и линейные. Бактерии содержат только кольцевые формы ДНК. У растений, грибов и животных имеются и линейные (в ядре клетки), и кольцевые (в хлоропластахи митохондриях) молекулы.

Функции ДНК:

    Хранение информации

    Передача и воспроизведение в ряду поколений генетической информации

    ДНК определяет, какие белки и в каких количествах необходимо синтезировать

Нуклеотид

Нуклеотиды - природные соединения, из которых, как из кирпичей, построенные цепочки . Также нуклеотиды входят в состав важнейших коферментов (органические соединения небелковой природы - компоненты некоторых ферментов) и других биологически активных веществ, служат в клетках переносчиками энергии.


Молекула каждого нуклеотида (мононуклеотид) состоит из трех химически различных частей.

1. Это пятиуглеродный сахар (пентоза):

Рибоза (в этом случае нуклеотиды называются рибонуклеотиды и входят в состав рибонуклеиновых кислот, или )

Или дезоксирибоза (нуклеотиды называются дезоксирибонуклеотиды и входят в состав дезоксирибонуклеиновой кислоты, или ).

2. Пуриновая или пиримидиновая азотистая основа связана с углеродным атомом сахара, образует соединение, которое называется нуклеозид.

3. Один, два или три остатки фосфорной кислоты , присоединенные эфирными связями к углероду сахара, образуют молекулу нуклеотида (в молекулах ДНК или РНК один остаток фосфорной кислоты).

Азотистые основания нуклеотидов ДНК - это пурины (аденин и гуанин) и пиримидиновые (цитозин и тимин). Нуклеотиды РНК содержат те же основы, что и ДНК, но тимин в них заменен близким по химическому строению урацилом.

Азотистые основания, и, соответственно, нуклеотиды, которые их включают, в биологической литературе принято обозначать начальными буквами (латинскими или украинскими/русскими) в соответствии с их названиями:
- - А (А);
- - G (Г);
- - С (Ц);
- тимин - Т (Т);
- урацил - U (У).
Сочетание двух нуклеотидов называется динуклеотид, нескольких - олигонуклеотид, множества - полинуклеотид или нуклеиновая кислота.

Помимо того что нуклеотиды образуют цепи ДНК и РНК, они являются коферментами, а нуклеотиды, несущие три остатка фосфорной кислоты (нуклеозидтрифосфат) - это источники химической энергии, которая заключенная в фосфатных связях. Чрезвычайно велика во всех процессах жизнедеятельности роль такого универсального переносчика энергии, как аденозинтрифосат (АТФ).

Нуклеотиды входят в состав: нуклеиновых кислот (полинуклеотиды), важнейших коферментов (НАД, НАДФ, ФАД, КоА) и других биологически активных соединений. Свободные нуклеотиды в виде нуклеозид моно-, ди-и трифосфата в значительных количествах содержатся в клетках. Нуклеозидтрифосфат - нуклеотиды, содержащие 3 остатка фосфорной кислоты, имеют богатый энергией аккумулирования в макроэргических связях. Особую роль играет АТФ - универсальный аккумулятор энергии. Высокоэнергетические фосфатные связи нуклеотидтрифосфатов используются в синтезе полисахаридов (уридинтрифосфат, АТФ), белков (ГТФ, АТФ), липидов (цитидинтрифосфат, АТФ). Нуклеозидтрифосфаты являются также субстратами для синтеза нуклеиновых кислот. Уридиндифосфат участвует в обмене углеводов, как переносчик остатков моносахаридов, цитидиндифосфат (переносчик остатков холина и этаноламина) - в обмене липидов.

Важную регуляторную роль в организме играют циклические нуклеотиды. Свободные нуклеозидмонофосфаты образуются путем синтеза или при гидролизе нуклеиновых к-т под действием нуклеаз. Последовательное фосфорилирование нуклеозидмонофосфатов приводит к образованию соответствующих нуклеотидтрифосфатов. Распад нуклеотидов происходит под действием нуклеотидазы (при этом образуются нуклеозиды), а также нуклеотидпирофосфорилазы, катализируют обратимую реакцию расщепления нуклеотидов к свободным основаниям и фосфорибозилпирофосфата.

К 1944 г. О. Эйвери и его коллеги К. Маклеод и М. Маккарти открыли трансформирующую активность ДНК у пневмококков. Эти авторы продолжили работу Гриффита, описавшего феномен трансформации (передачи наследственных признаков) у бактерий. О. Эйвери, К. Маклеод, М. Маккарти показали, что при удалении белков, полисахаридов и РНК трансформация бактерий не нарушается, а при воздействии на индуцирующее вещество ферментом дезоксирибонуклеазой трансформирующая активность исчезает.

В этих экспериментах впервые была продемонстрирована генетическая роль молекулы ДНК. В 1952 г. А. Херши и М. Чейз подтвердили генетическую роль молекулы ДН К в опытах на бактериофаге Т2. Пометив его белок радиоактивной серой, а ДНК-радиоактивным фосфором,они инфицировали этим бактериальным вирусом кишечную палочку Е. coli. В потомстве фага было выявлено большое количество радиоактивного фосфора и лишь следы S. Отсюда следовало, что именно ДНК, а не белок фага проникает в бактерию, а затем после репликации передается фаговому потомству.

    Строение нуклеотида ДНК. Типы нуклеотидов.

Нуклеотид ДНК состоит из

Азотистого основания (в ДНК 4 типа: аденин, тимин, цитозин, гуанин)

Моносахара дезоксирибозы

Фосфорной кислоты

Молекула нуклеотида состоит из трех частей - пятиуглеродного сахара, азотистого основания и фосфорной кислоты.

Сахар, входящий в состав нуклеотида , содержит пять углеродных атомов, т. е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот - рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу. В дезоксирибозе - ОН-группа при 2-м атоме углерода заменена на атом Н, т. е. в ней на один атом кислорода меньше, чем в рибозе.

В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов и два - к классу пиримидинов. Основной характер этим соединениям придает включенный в кольцо азот. К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов - цитозин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК). Тимин химически очень близок к урацилу (он представляет собой 5-метилурацил, т. е. урацил, в котором у 5-го углеродного атома стоит метильная группа). В молекуле пуринов имеется два кольца, а в молекуле пиримидинов - одно.

Нуклеотиды соединяются между собой прочной ковалентной связью через сахар одного нуклеотида и фосфорную кислоту другого. Получаетсяполинуклеотидная цепь . На одном ее конце – свободная фосфорная кислота (5’-конец), на другом – свободный сахар (3’-конец). (ДНК-полимераза может присоединять новые нуклеотиды только к 3’-концу.)

Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями. Соблюдаются 2 правила:

    принцип комплементарности: напротив аденина всегда стоит тимин, напротив цитозина – гуанин (они подходят друг другу по форме и числу водородных связей – между А и Г две связи, между Ц и Г – 3).

    принцип антипараллельности: там, где у одной полинуклеотидной цепи 5’-конец, у другой – 3’-конец, и наоборот.

Получается двойная цепь ДНК.

Она скручивается в двойную спираль , один виток спирали имеет длину 3,4 нм, содержит 10 пар нуклеотидов. Азотистые основания (хранители генетической информации) находятся внутри спирали, защищенные.

    Структурная организация молекулы ДНК. Модель Дж.Уотсона и Ф.Крика

В 1950 г. английский физик М.Уилкинс получил рентгенограмму кристаллических волокон ДНК. Она показала, что молекула ДНК имеет определенную структуру, расшифровка которой помогла бы понять механизм функционирования ДНК. Рентгенограммы, полученные не на кристаллических волокнах ДНК, а на менее упорядоченных агрегатах, которые образуются при более высокой влажности, позволили Розалинд Франклин, коллеге М. Уилкинса, увидеть четкий крестообразный рисунок - опознавательный знак двойной спирали. Стало известно также, что нуклеотиды расположены друг от друга на расстоянии 0,34 нм, а на один виток спирали их приходится 10. Диаметр молекулы ДНК составляет около 2 нм. Из рентгеноструктурных данных, однако, было не ясно, каким образом цепи удерживаются вместе в молекулах ДНК.

Картина полностью прояснилась в 1953 г., когда американский биохимик Дж. Уотсон и английский физик Ф. Крик, исследуя структуру молекулы ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания - в середине. Причем последние ориентированы таким образом, что между основаниями из противоположных Цепей могут образоваться водородные связи. Из построенной ими модели выявилось, что какой-либо пурин в одной цепи всегда связан водородными связями с одним из пиримидинов в другой цепи. Такие пары имеют одинаковый размер по всей длине молекулы. Не менее важно то, что аденин может спариваться лишь с тимином, а гуанин только с с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином и цитозином – три.

    Свойства и функции ДНК.

    Хранение наследственной информации (генетический код – способ записи ген.информации о последовательности аминокислот в белке с помощью нуклеотидов (Гамов)

    Передача (репликация/удвоение)

    Реализация (транскрипция)

    Ауторепродукция ДНК. Репликон и его функционирование.

Процесс самовоспроизведения молекул нуклеиновых кислот, сопровождающийся передачей по наследству (от клетки к клетке) точных копий генетической информации; осуществляется с участием набора специфических ферментов (геликаза, контролирующая расплетание молекулы ДНК, ДНК-полимеразы, ДНК-лигаза), проходит по полуконсервативному типу с образованием репликативной вилки; на одной из цепей синтез комплементарной цепи непрерывен, а на другой происходит за счет образования фрагментов Дказаки. Высокоточный процесс, частота ошибок при котором не превышает 10 -9 ; у эукариот может происходить сразу в нескольких точках одной молекулы ДНК; скорость у эукариот около 100, а у бактерий - около 1000 нуклеотидов в сек.

Репликон - единица процесса репликации участка генома, который находится под контролем одной точки инициации (начала) репликации. Термин предложен Ф. Жакобом и С. Бреннером в 1963 году. Геном прокариот представляет собой, как правило, один репликон. От точки инициации репликация идёт в обе стороны, в некоторых случаях с неравной скоростью. У эукариот геном состоит из многих (часто до неск. десятков тысяч) репликонов.

    Генетический код, его свойства.

Генетический код – способ записи генетической инофрмации о последовательности аминокислот в белке с помощью нуклеотидов. Открытие ген. Кода принадлежит Георгию Гамову. 1954год.

    Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

    Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно.

    Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

    Однозначность (специфичность) - определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)

    Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

    Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже).

    Помехоустойчивость - мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными ; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными .

    Понятие о гене. Свойства Гена.

Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены определяют наследственные признаки организмов, передающиеся от родителейпотомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную ДНК, не входящую в геном организма, которая определяет их признаки.

(Термин введен в 1909 году датским ботаником Вильгельмом Йогансеном)

    дискретность - несмешиваемость генов;

    стабильность - способность сохранять структуру;

    лабильность - способность многократно мутировать;

    множественный аллелизм - многие гены существуют в популяции во множестве молекулярных форм;

    аллельность - в генотипе диплоидных организмов только две формы гена;

    специфичность - каждый ген кодирует свой признак;

    плейотропия - множественный эффект гена;

    экспрессивность - степень выраженности гена в признаке;

    пенетрантность - частота проявления гена в фенотипе;

    амплификация - увеличение количества копий гена.

    Особенности организации генома эукариот.

Геном эукариот:

    большое число генов,

    большее количество ДНК,

    в хромосомах имеется очень сложная система контроля активности генов во времени и пространстве, связанная с дифференциацией клеток и тканей в онтогенезе организма.

Количество ДНК в хромосомах велико и возрастает по мере усложнения организмов. Для эукариот также характернаизбыточность генов. Так, у человека геном содержит число нуклеотидных пар, достаточное для образования более 2 млн. структурных генов, в то время как у человека имеется по данным 2000 года 31 тыс. всех генов.

Больше половины гаплоидного набора генома эукариотов составляют уникальные гены, представленные лишь по одному разу. У человека таких уникальных генов - 64%, у теленка - 55%, у дрозофилы - 70%.

    Классы нуклеотидных последовательностей в ДНК эукариот, их характеристика, свойства и биологичесок значение.

Нуклеотидные последовательности в геноме эукариот

В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фунда­ментальная особенность молекулярной структуры генома эукариот – нуклеотидные последовательности разной степени повторяемости. Это открытие было сделано с по­мощью молекулярно-биологического метода изучения кинетики ренатурации денатурированной ДНК. Различают следующие фракции в геноме эукариот.

1. Уникальные, т.е. последовательности, представ­ленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2. Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3. Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК (у человека 200 на гаплоидный набор, у мыши – 100, у кошки – 1000, у рыб и цветковых растений – тысячи), тРНК, гены рибосомных белков и белков-гистонов.

4. Высокочастотные повторы, число которых достигает 10 миллионов (на геном). Это короткие (~ 10 пн) некодирующие последовательности, которые входят в состав прицентромерного гетерохроматина.

    Уровни организации генома эукариот.

    Химический и структурный состав хромосом.

Молекулярно-биологические исследования позволили получить представление не только о химической структуре хромосом, но также и об их надмолекулярной организации и особенностях функционирования. В настоящее время известно, что хромосомы представляют собой нуклеопротеидные образования, состоящие из ДНК и белка. Кроме того, в хромосомах присутствует некоторое количество РНК, образующейся при транскрипции, и ионы Са+ и Mg+. Каждая хроматида, а в промежутке времени анафаза- S -период интерфазы и хромосома, содержит одну молекулу ДНК, которая определяет все функции хромосомы, связанные с хранением наследственной информации, её передачей и реализацией. Молекула ДНК в хромосомах тесно связана с двумя классами белков- гистонами (основные белки) и негистонами (кислые белки). Гистоны - это небольшие по величине белки с высоким содержанием заряженных аминокислот (лизина и аргинина). Суммарный положительный заряд позволяет гистонам связываться с ДНК независимо от нуклеотидного состава. Им принадлежит в основном структурная функция. Это очень стабильные белки, молекулы которых могут сохраняться в течение всей жизни клетки. В эукариотической клетке присутствуют 5 типов гистонов, которые распределяются на две основные группы: первая группа (их обозначают как Н2А, Н2В, НЗ, Н4), отвечает за формирование специфических дезоксирибонуклеопротеидных комплексов - нуклеосом. Вторая группа гистонов (HI) располагается между нуклеосомами и фиксирует укладку нуклеосомной цепи в более высокий уровень структурной организации (супернуклеосомную нить). Среди гистоновых белков, кроме структурных, встречаются такие, которые способны ограничивать доступность ДНК для ДНК - связывающих регуляторных белков и тем самым участвовать в регуляции активности генов. Негистоновые белки весьма разнообразны. Число их фракций превышает 100. Они присутствуют в меньших количествах в хромосомах в сравнении с гистонами и выполняют в основном регуляторную функцию. Участвуют в регуляции транскрипционной активности генов, в обеспечении редупликации и репарации ДНК. Большинство негистоновых белков хроматина присутствуют в клетках в небольшом количестве (минорные) - это регуляторные белки, узнающие специфические последовательности ДНК и связывающиеся с ними. Они вовлечены во многие генетические процессы, но известно о них пока что немного. Количественно преобладают негистоновые белки (мажорные), высокоподвижные, относительно малого размера, с большим электрическим зарядом - они всегда соединяются с нуклеосомами, содержащими активные гены. Кроме того, в группу негистоновых белков входит много ферментов.

    Уровни упаковки наследственного материала у эукариот.

Таким образом, уровни упаковки ДНК следующие:

1) Нуклеосомный (2,5 оборота двуспиральной ДНК вокруг восьми молекул гистоновых белков).

2) Супернуклеосомный - хроматиновая спираль (хромонема).

3) Хроматидный - спирализованная хромонема.

4) Хромосома - четвертая степень сперализации ДНК.

В интерфазном ядре хромосомы деконденсированы и представлены хроматином. Деспирализованный участок, содержащий гены, называется эухроматин (разрыхленный, волокнистый хроматин). Это необходимое условие для транскрипции. Во время покоя между делениями определенные участки хромосом и целые хромосомы остаются компактными.

Эти спирализованные, сильно окрашивающиеся участки, называются гетерохроматином. Они неактивны в отношении транскрипции. Различают факультативный и конститутивный гетерохроматин.

Факультативный гетерохроматин информативен, т.к. содержит гены и может переходить в эухроматин. Из двух гомологичных хромосом одна может гетерохроматической. Конститутивный гетерохроматин всегда гетерохроматичен, неиформативен (не содержит генов) и поэтому всегда неактивен в отношении транскрипции.

Хромосомная ДНК состоит из более 10 8 пар оснований, из которых образуется информативные блоки - гены, расположенные линейно. На их долю приходится до 25% ДНК. Ген - функциональная единица ДНК, содержащая информацию для синтеза полипептидов, или всех РНК. Между генами находятся спейсеры - неинформативные отрезки ДНК разной длины. Избыточные гены представлены большим числом - 10 4 идентичных копий. Примером являются гены для т-РНК, р-РНК, гистонов. В ДНК встречаются последовательности одних и тех же нуклеотидов. Они могут быть умеренно повторяющимися и высоко повторяющимися последовательностями. Умеренно повторяющиеся последовательности достигают 300 пар нуклеотидов с повторениями 10 2 - 10 4 и представляют чаще всего спейсеры, избыточные гены.

Высокоповторяющиеся последовательности (10 5 - 10 6) образуют конститутивный гетерохроматин. Около 75% всего хроматина не участвует в транскрипции, он приходится на высокоповторяющиеся последовательности и нетранскрибируемые спейсеры.

    Морфологические особенности метафазной хромосомы.

Митотическая суперкомпактизация хроматина делает возможным изучение внешнего вида хромосом с помощью световой микроскопии. В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры или кинетохора ) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.

В зависимости от места положения центромеры и длины плеч, расположенных по обе стороны от нее, различают несколько форм хромосом: равноплечие, или метацентрические (с центромерой посередине), неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов), палочковидные, или акроцентрические (с центромерой, расположенной практически на конце хромосомы), и точковые -очень небольшие, форму которых трудно определить (рис. 3.52). При рутинных методах окраски хромосом они различаются по форме и соотносительным размерам. При использовании методик дифференциальной окраски выявляется неодинаковая флуоресценция или распределение красителя по длине хромосомы, строго специфические для каждой отдельной хромосомы и ее гомолога (рис. 3.53).

Таким образом, каждая хромосома индивидуальна не только по заключенному в ней набору генов, но и по морфологии и характеру дифференциального окрашивания.

    Эу- и гетерохроматин, их биологическое значение.

Некото­рые хромосомы во время клеточного деления выглядят конденси­рованными и интенсивно окрашенными. Такие различия были названы гетеропикнозом. Для обозначения районов хромосом, демонстрирующих положительный гетеропик­ноз на всех стадиях митотического цикла был предложен термин «гетерохроматин». Различают эухроматин - основную часть митотических хромосом, которая претерпевает обычный цикл компактизации декомпактизации во время ми­тоза, и гетерохроматин - участки хромосом, постоянно находящиеся в компактном состоя­нии.

У большинства видов эукариот хромосо­мы содержат как эу-, так и гетерохроматино­вые участки, причем последние составляют значительную часть генома. Гетерохроматин располагается в прицентромерных, иногда в прителомерных областях. Обнаружены гетерохроматиновые участки в эухроматиновых плечах хромосом. Они выглядят как вкрапления (интеркаляции) гетерохроматина в эухроматин. Такой гетеро­хроматин называют интеркалярным. Компактизация хроматина. Эухроматин и гетерохроматин различаются по циклам компактизации. Эухр. проходит полный цикл компактизации-декомпактизации от интерфазы до интерфазы, гетеро. сохраняет состояние от­носительной компактности. Дифференциальная окрашиваемость. Разные участки гетерохроматина окраши­ваются разными красителями, некоторые рай­оны - каким-то одним, другие - несколькими. Применяя различные красители и используя хромосомные перестройки, разры­вающие гетерохроматиновые районы, у дрозо­филы удалось охарактеризовать много неболь­ших районов, где сродство к окраскам отлично от соседних участках.

    Понятие о кариотипе (определение).Обща характеристика кариотипа человека.

Кариотип - диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом.

Если число хромосом в гаплоидном наборе половых клеток обозначить п, то общая формула кариотипа будет выглядеть как 2п, где значение п различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы ), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы ). Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов (XX или ХО). Чаще различия касаются строения половых хромосом, обозначаемых разными буквами -X и Y (XX или XY).

Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,- генотип - это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи.

    Денверская (1960) и Парижская (1971) классификация хромосом человека: основные принципы и сущность.

Денверская и Парижская классификация хромосом Хромосомы подразделяются на аутосомы (соматических клеток) и гетерохромосомы (половых клеток). По предложению Левитского (1924) диплоидный набор соматических хромосом клетки был назван кариотипом. Он характеризуется числом, формой, размерами хромосом. Для описания хромосом кариотипа по предложению С.Г. Навашина их располагают в виде идиограммы - систематизированного кариотипа. В 1960 году была предложена Денверская международная классификация хромосом, где хромосомы классифицированы по величине и расположению центромеры. В кариотипе соматической клетки человека различают 22 пары аутосом и пару половых хромосом. Набор хромосом в соматических клетках называют диплоидным , а в половых клетках - гаплоидным (он равен половине набора аутосом). В идиограмме кариотипа человека хромосомы делят на 7 групп, в зависимости от их размеров и формы. 1 - 1-3 крупные метацентрические. 2 - 4-5 крупные субметацентрические. 3 - 6-12 и Х-хромосома средние метацентрические. 4 - 13-15 средние акроцентрические. 5 - 16-18 относительно малые мета-субметацентрические. 6 - 19-20 малые метацентрические. 7 - 21-22 и Y-хромосома наиболее малые акроцентрические. Согласно Парижской классификации хромосомы разделены на группы по их размерам и форме, а также линейной дифференцировке.