Физиология органа зрения:

Поступление питательных веществ,

Физиологические функции.

Подробная анатомия камер глаза.

Угол передней камеры.

Трабекулярный аппарат глаза.

Наружная оболочка глаза: основной её функцией является поддержание формы глаза, поддержание определённого тургора, защита глаза, наружная фиброзная оболочка – это место прикрепления глазодвигательных мышц. Эта оболочка имеет 2 неравных отдела: роговицу и склеру.

Роговица: кроме выполнения общих функций, свойственных фиброзной оболочке, роговица принимает участие в преломлении световых лучей.

Роговица совершенно не содержит кровеносных сосудов, только поверхностные слои лимба снабжены краевым сосудистым сплете­нием и лимфатическими сосудами. Процессы обмена обеспечива­ются за счет краевой петлистой сосудистой сети, слезы и влаги передней камеры.

Эта относительная изолированность благоприятно сказывается на пересадке роговицы при бельмах. Антитела не достигают пере­саженной роговицы и не разрушают ее, как это происходит с дру­гими чужеродными тканями. Роговица очень богата нервами и является одной из самых высокочувствительных тканей человеческого организма. Наряду с чувствительными "нервами, источником которых "является тройничный нерв, в роговице установлено нали­чие симпатической иннервации, выполняющей трофическую функ­цию. Для того чтобы обмен веществ происходил нормально, необ­ходима точная сбалансированность между тканевыми процессами и кровью. Именно поэтому излюбленным местом клубочковых рецепторов является роговично-склеральная зона, богатая сосуда­ми. Здесь-то и располагаются сосудисто-тканевые рецепторы, ре­гистрирующие малейшие сдвиги в нормальных процессах обмена веществ.

Нормально протекающие обменные процессы - залог прозрач­ности роговицы. Вопрос о прозрачности является едва ли не са­мым существенным в физиологии роговицы. До сих пор остается загадкой, почему роговица прозрачна. Высказывают предположе­ния, что прозрачность зависит от свойств протеинов и нуклеотидов роговичной ткани. Придают значение правильности расположения коллагеновых фибрилл. На гидратацию оказывает влияние избира­тельная проницаемость эпителия. Нарушение взаимодействия в од­ной из этих сложных цепей приводит к потере прозрачности ро­говицы.

Таким образом, основными свойствами роговицы следует счи­тать прозрачность, зеркальность, сферичность, определенный размер, высокую чувствительность.

Склера: составляет 5/6 всей фиброзной оболочки, поэтому основной функцией склеры является поддержание формы глаза, также к склере прикрепляются глазодвигательные мышцы.

Средняя оболочка глаза включает в себя 3 составляющих части: радужная оболочка, цилиарное тело, сосудистая оболочка.

Радужная оболочка: В радужной оболочке есть 2 мышцы сфинктер и дилятатор.В результате взаимодействия двух этих антагонистов - радужная оболочка получает возможность путем рефлекторного сужения и расширения зрачка регулировать поток проникающих внутрь глаза световых лучей, причем диаметр зрачка может изменяться от 2 до 8 мм. Сфинктер получает иннервацию от глазодвигательного нерва (n. oculo-motorius) с ветвями коротких цилиарных нервов; по тому же пути к дилятатору подходят иннервирующие его симпатические волокна. Однако «распространенное мнение о том, что сфинктер радужной оболочки и цилиарная мышца обеспечиваются исключительно парасимпатическим, а дилятатор зрачка только лишь симпатическим нервом, на сегодняшний день не­приемлемо» (Роген, 1958).

Цилиарное тело занимается вопросами продуцированием камерной влаги, также в цилиарном теле находится аппарат, позволяющий камерной влаге оттекать из глазного яблока.

Передняя камера. Наружной стенкой передней камеры слу­жит купол роговицы, задняя ее стенка представлена радужной оболочкой, в области зрачка - центральной частью передней капсулы хрусталика, а на крайней периферии передней камеры, в ее углу - небольшим участ­ком цилиарного тела у его основания (рис. 14, 30). Состав камерной влаги может меняться в зависимости от характера метаболизма тканей и нахо­дится под регулирующим влиянием нервной системы. С. С. Головин (1923) характеризует переднюю камеру как «отрезок шаровой полости, имеющей круглое основание и сферический, покрывающий ее купол». Передняя каме­ра доступна непосредственному осмотру невооруженным глазом за исклю­чением ее угла. Из-за непрозрачности лимба камерный угол доступен осмотру лишь при помощи гониоскопа. Камерный угол граничит непосред­ственно с дренажным аппаратом, т. е. шлеммовым каналом. Состояние камерного угла имеет большое значение в обмене внутриглазной жидкости и может играть важную роль в изменении внутриглазного давления при глаукоме, особенно вторичной.

Благодаря сферичности роговицы глубина передней камеры (расстоя­ние от задней поверхности роговицы до переднего полюса хрусталика) не­одинакова: в центре она достигает 2,6-3 мм, на периферии глубина камеры значительно меньше. В условиях патологии диагностическое значение при­обретает как глубина передней камеры, так и ее неравномерность. Объем передней камеры 0,2-0,4 см", т. е. 2-4 деления шприца Проваца (С. С. Го­ловин, 1923). По Аксенфельду (Axenfeld, 1958), объем передней камеры колеблется от 0,02 до 0,3 см 3 . Камера заполнена бесцветной прозрачной жидкостью - камерной влагой, содержащей главным образом соли в рас­творе (0,7-0,9%) и следы белка (0,02%); следует отметить и наличие аскорбиновой кислоты. Стенки передней камеры выстланы эндотелием, прерывающимся в области крипт радужной оболочки.

Задняя камера . Задняя камера расположена позади так назы­ваемой иридо-хрусталиковой диафрагмы (lens iris diaphragma), непрерыв­ность которой нарушается только узкой капиллярной щелью между зрач­ковым краем радужной оболочки и передней поверхностью хрусталика. В норме эта щель служит местом сообщения передней и задней камер. При патологических процессах (например, при растущей в заднем отделе глаза опухоли, при глаукоме) иридо-хрусталиковая диафрагма может продвигаться вперед как единое целое. Прижатие хрусталика к зад­ней поверхности радужной оболочки, так называемая блокада зрачка, ведет к полному разобщению обеих камер и повышению внутриглазного давления. Зальцман на основании топографических особенностей подразде­ляет заднюю камеру на ряд отделов:

    презонулярное пространство, или задняя камера в тесном смысле слова, пространство между радужной обо­лочкой, передней поверхностью хрусталика и передними зонулярными волокнами;

    околохрусталиковое пространство - промежуток кольце­видной формы между вершинами цилиарных отростков и экватором хрус­талика; сзади оно соприкасается с membrana hyaloidea стекловидного тела, спереди - с передними зонулярными волокнами, идущими к передней капсуле хрусталика;

    цилиарные впадины, представляющие собой ряд каналов между отростками цилиарного тела, прикрытых снутри погранич­ным слоем стекловидного тела; через них проходят зонулярные волокна;

    орбикулярный отдел, наиболее периферический, в виде узкой щели между плоской частью цилиарного тела (orbiculua ciliaris) снаружи и погранич­ным слоем стекловидного тела снутри.

Задняя камера, как и передняя, заполнена камерной влагой.

Угол передней камеры и дренажный аппа­рат глаза. Камерная влага и ее динамика. В пре­делах передней камеры особое внимание привлекает к себе ее перифериче­ский отдел, расположенный кольцевидно,- угол передней камеры или, как его нередко называют, фильтрационный угол камеры. В физиологических условиях он играет существенную роль в обмене камерной влаги, в ее оттоке. Патологическое состояние угла передней камеры обусловливает нарушение внутриглазного давления. Угол передней камеры граничит снаружи с фиброзной капсулой глаза, соот­ветственно лимбу. Задней его стенкой служит корень радужной оболочки, а у самой его вершины короткий отрезок цилиарного тела, его основания (этот контакт цилиарного тела с передней камерой обусловливает возмож­ность раннего прорастания в угол камеры злокачественной опухоли цилиарного тела, меланобластомы, при ее исходе из карниза цилиарного тела). Соответственно вершине угла в склере, как выше было указано, проходит неглубокий, кольцевидно располагающийся желобок - sulcus sclerae internus. Задний край желобка несколько утолщен и образует так называемый склеральный валик, сформированный за счет круговых волокон склеры (заднее пограничное кольцо Швальбе, наблюдаемое в гониоскоп). Склераль­ный валик служит местом прикрепления поддерживающей связки цилиар­ного тела и радужной оболочки - трабекулярного аппарата, заполняющего в виде губчатой ткани переднюю часть склерального желобка, в задней части он прикрывает шлеммов канал. Трабекулярный аппарат, ошибочно ранее именовавшийся гребенчатой связкой (lig. pectinatum), состоит из двух частей: склеро-корнеальной (lig. sclero-corneale), соста­вляющей большую часть трабекулярного аппарата, и второй, более нежной, увеальной части. Последняя, расположенная с внутренней стороны, и пред­ставляет собственно гребенчатую связку (lig. pectinatum), сильно развитую у птиц и слабо выраженную у человека. На меридиональном срезе трабекулярный аппарат представляет треугольник, вершина которого соприкасается с десцеметовой оболочкой, сливаясь с ней и с глубокими пластинками роговицы.

Склеро-корнеальный отдел трабекулярного аппарата прикрепляется к склеральной шпоре (поперечное сечение склерального валика в виде клюва или шпоры позади шлеммова канала), а частично сливается с цилиарной мышцей (с мышцей Брюкке). Эта анатомическая связь мышцы с трабекулярным аппаратом, возможно, оказывает влияние при сокращении мышц на отток водянистой влаги через фонтановы пространства в шлеммов канал. Волокна увеальной части трабекулярного аппарата огибают камерный угол в виде нежных дугообразных нитей, идущих к корню радужной обо­лочки.

Склеро-корнеальная часть трабекулярного аппарата состоит из сети переплетающихся трабекул, имеющих сложную структуру. В центре каждой трабекулы, представляющей плоский тонкий тяж, про­ходит коллагеновое волокно, отходящее частично от роговицы и частично от склеры, обвитое и укрепленное эластическими волокнами и покрытое снаружи футляром из гомогенной стекловидной оболочки, составляющей продолжение десцеметовой оболочки.

Между сложным переплетом корнеосклеральных волокон остаются многочисленные свободные щелевидные отверстия - фонтановы пространства, выстланные эндотелием, переходя­щим с задней поверхности роговицы. Фонтановы пространства направлены к стенке кругового синуса - шлеммова канала, расположенного в нижнем отделе склерального желобка. Со стороны передней камеры шлеммов канал прикрывают, как указано выше, волокна трабекулярного аппа­рата. Увеальная часть трабекулярного аппарата слабее и проще устроена. Эластическая сеть в ней отсутствует. Шлеммов канал проходит в виде кольцевидного сосуда по дну склерального желобка. Канал предста­вляется одиночным, шириной в 0,25 мм, местами он разделяется па ряд канальцев, далее сливающихся снова в один ствол. Изнутри шлеммов канал выстлан эндотелием.

С наружной стороны шлеммова канала отходят широкие, местами варикозно расширенные сосуды (чис­лом 20-30-40), образующие слож­ную сеть анастомозов Наибольшее количество отводящих коллекторов имеется в нижненаруж­ной части шлеммова канала. От сети анастомозов берут начало сосуды - водяные вены (hammer wasser venae), отводящие далее камерную влагу в глубокое склеральное венозное сплете­ние. Часть водяных вен, впрочем, не связана со склеральным сплетением, а проходит прямо на соединение с эписклеральными венами. В глубокое склеральное сплетение откры­ваются и эфферентные вены, несущие кровь от наружного слоя цилиарной мышцы (вены небольшого наружного участка цилиарной мышцы оттекают не в v. corticosa, а в небольшие передние цилиарные вены). По Эштону, влага, вытекающая из глаза, через шлеммов канал изливается в венозное русло, которое соединяется как с внутриглазной венозной системой через эфферентные вены сплетения цилиарной мышцы, так и с наружной веноз­ной системой через эписклеральные и конъюнктивальные вены.

Трабекулярный аппарат глаза, шлеммов канал и его отводящие кол­лекторы, являющиеся путями оттока камерной влаги в целом, носят назва­ние фильтрационного, или дренажного, аппарата глаза.

Циркуляция внутриглазной жидкости. Источ­ником камерной влаги является цилиарное тело, его отростки. Камерная влага образуется из плазмы крови путем диффузии из сосудов цилиарного тела и при активном участии цилиарного эпителия. Об этой функции цилиарного тела говорят уже анатомические данные - увеличение внутрен­ней поверхности цилиарного тела за счет многочисленных его отростков (70-80), обилие сосудов в цилиарном теле и особенно сеть широких его капилляров, расположенных в его отростках, непосредственно под эпителием.

О том же свидетельствует наличие обильных нервных окончаний у цилиарного эпителия. Главная масса камерной влаги проникает из зад­ней камеры в переднюю через капиллярную щель между зрачковым краем радужной оболочки и хрусталиком, чему способствует постоянная игра зрачка под действием света. Далее, камерная влага через фонтановы отвер­стия путем диффузии благодаря разнице осмотического давления в камер­ной влаге и шлеммовом канале проникает в шлеммов канал и его отводящие коллекторы и через водяные вены оттекает в эписклеральные вены и попа­дает в конечном итоге в ток крови.

Сосудистая оболочка. Сосудистая система хориоидеи представлена короткими задними ресничными артериями, которые в количестве б-8 проникают у заднего полюса склеры и образуют густую сосудистую сеть. Оби­лие сосудистой сети соответствует активной функции сосудистой оболочки. Хориоидея является энергетической базой, обеспечи­вающей восстановление непрерывно распадающегося зрительного пурпура, необходимого для зрения. На всем протяжении оптиче­ской зоны сетчатка и хориоидея взаимодействуют в физиологиче­ском акте зрения.

Хрусталик. Особенностью химического состава хрусталика является высокий про­цент (свыше 35) содержащихся в нем белковых веществ. Хрусталик не имеет сосудов. Поступление составных частей для обмена веществ и выделение про­дуктов обмена происходят путем диффузии и осмоса и протекают крайне медленно, причем передняя капсула хрусталика играет роль полупроницае­мой перепонки. В регуляции питания хрусталика принимает участие суб-капсулярный эпителий передней поверхности хрусталика и экваториальная его часть.

Источником питания хрусталика являются внутриглаз­ная жидкость и прежде всего камерная влага. Недостаток необходимых для питания хрусталика веществ или проникновение вредных, лишних ингре­диентов нарушает процесс нормального обмена и приводит к расщеплению белка, распаду волокон, помутнению хрусталика-катаракте.

Стекловидное тело. По своей химической природе оно представляет собой гидрофильный гель ограниченного происхождения. В состав стекловидного тела входит 98-99% воды. Стекловидное тело обеспечивает глазу определенную форму и постоян­ное соотношение частей оптического аппарата, а также тесное прилегание внутренних оболочек глаза. Преломляющая способность стекловидного тела не имеет большого значения в диоптрическом аппарате глаза. Вследствие отсутствия в стекловидном теле сосудов самостоятельных воспалительных процессов в нем не возникает. Изменения, наблюдаемые в нем, зависят от заболеваний цилиарного тела, хориоидеи, сетчатки, из которых экссудат поступает в стекловидное тело. Травматические повреждения глаза и после­операционные осложнения говорят о том, что стекловидное тело предста­вляет благоприятную среду для развития бактерий, вызывающих в глазу разнообразные инфекционные процессы.

Анатомия и физиология путей оттока ВГЖ

Полость глаза содержит светопроводящие среды: водянистую влагу, заполняющую его переднюю и заднюю камеры, хрусталик и стекловидное тело . Регуляция обмена веществ во внутриглазных структурах , в частности, в оптических средах , и поддержание тонуса глазного яблока обеспечивается циркуляцией внутриглазной жидкости в камерах глаза .

Внутриглазная жидкость (ВГЖ) - важный источник питания внутренних структур глаза. Водянистая влага циркулирует преимущественно в переднем сегменте глаза. Она участвует в обмене веществ хрусталика, роговой оболочки, трабекулярного аппарата, стекловидного тела и играет важную роль в поддержании определенного уровня .

Внутриглазная жидкость непрерывно продуцируется отростками цилиарного тела , накапливается в задней камере, которая представляет собой щелевидное пространство сложной конфигурации, расположенное кзади от радужки . Затем большая часть влаги оттекает через зрачок, омывая хрусталик, после чего поступает в переднюю камеру и проходит через дренажную систему глаза, находящуюся в зоне угла передней камеры - трабекулу и шлеммов канал (венозный синус склеры ). Из него внутриглазная жидкость оттекает через выводящие коллекторы (выпускники) в поверхностные вены склеры .

Передняя стенка угла передней камеры образуется в месте перехода роговицы в склеру , задняя - образована радужной оболочкой , вершиной угла служит передняя часть цилиарного тела .

Трабекула представляет собой сетевидное кольцо, образованное соединительнотканными пластинками, имеющими множество отверстий и щелей. Водянистая влага просачивается через трабекулярную сеть и собирается в шлеммовом канале , представляющем собой циркулярную щель с диаметром просвета около 0.3-0.5 мм, а затем оттекает через 25-30 тонких канальцев (выпускников), впадающих в эписклеральные (наружные) вены глаза , которые и являются конечным пунктом оттока водянистой влаги.

Трабекулярный аппарат представляет собой многослойный, самоочищающийся фильтр, обеспечивающий одностороннее движение жидкости из передней камеры в склеральный синус.

Описанный путь является основным и по нему оттекает в среднем 85-95% водянистой влаги. Кроме переднего пути оттока внутриглазной жидкости, выделяют и дополнительный: примерно 5-15% водянистой влаги уходит из глаза, просачиваясь через цилиарное тело и склеры в вены сосудистой оболочки и склеральные вены , формируя, так называемый, увеосклеральный путь оттока .

Состояние дренажной системы глаза может быть оценено с помощью специального метода исследования - гониоскопии . Гониоскопия позволяет определить ширину угла передней камеры , а также состояние трабекулярной ткани и шлеммова канала . Угол передней камеры может быть широким, средним и узким. На основе данных гониоскопии выделяют разные клинические формы глаукомы . При открытоугольной форме глаукомы гониоскопически видны все детали угла передней камеры, при закрытоугольной форме детали угла скрыты от наблюдения.

Между притоком и оттоком внутриглазной жидкости (ВГЖ) существует определенное равновесие. Если оно по каким-то причинам нарушается, это приводит к изменению уровня внутриглазного давления (ВГД) . При стойком и длительном повышении внутриглазного давления возникают препятствия (блоки), которые приводят к нарушению сообщений между полостями глазного яблока или закрытию дренажных каналов. Эти блоки могут быть преходящими (временными) или органическими (постоянными).

Различают четыре степени компенсации внутриглазного давления при глаукоме:

  • компенсированное внутриглазное давление (ВГД) не превышает 26 мм рт. ст. (норма - от 18 до 27 мм рт. ст. - по последним данным предпочтительно стабилизировать давление на уровне не болл 22 мм рт. ст.),
  • субкомпенсированное ВГД - от 27 до 35 мм рт. ст.,
  • некомпенсированное ВГД - выше 35 мм рт. ст., декомпенсация, или острый приступ Г., когда внутриглазное давление может повышаться до 70-80 мм рт. ст.

Глаз является замкнутой полостью, ограниченной наружной капсулой (склера и роговица). В глазу происходит обмен жидкостей - их приток и отток. Основное место в продукции их занимает ресничное тело. Продуцируемая им жидкость попадает в заднюю камеру глаза, затем через зрачок проходит в переднюю, откуда через угол передней камеры и шлеммов канал попадает в венозную сеть (см. рис. 4). По-видимому, радужка тоже принимает участие в этом. В нормальном глазу имеется строгое соответствие притока и оттока глазных жидкостей, и глаз имеет определенную плотность, которая называется внутриглазным давлением. Обозначается оно буквой Т (начальная буква латинского слова tensio - давление). Внутриглазное давление измеряется в миллиметрах ртутного столба и зависит от многих причин. Главными являются количество внутриглазной жидкости и крови во внутренних сосудах глаза. Методика исследования внутриглазного давления описана в главе IV.

Иногда в силу разных причин получается диспропорция между притоком и оттоком внутриглазных жидкостей и повышается внутриглазное давление, развивается глаукома. Среди причин слепоты глаукома во всем мире стоит на первом месте - на ее долю приходится до 23 % ослепших.

Глаукома - слово греческое, означает «зеленый». Действительно, при остром приступе зрачок становится слегка зеленоватым, глаз как бы налит зеленоватой водой. Отсюда и ее название в народной медицине «зеленая вода». Различают два вида глаукомы - первичную и вторичную. Первичная глаукома - это те случаи заболевания, когда неизвестна причина повышения внутриглазного давления. При вторичной глаукоме причины повышения внутриглазного давления ясны (кровь в передней камере, круговая синехия, рубец роговицы, спаянный с радужкой, и т. п.). Мы рассмотрим лишь первичную глаукому, так как причины и лечение вторичной глаукомы ясны.

Для глаукомы характерны следующие 3 признака: повышение внутриглазного давления (основной признак), снижение зрительных функций и экскавация диска зрительного нерва.

Внутриглазное давление в норме равно 18-27 мм рт. ст. Оно может меняться от многих причин. Давление, равное 27 мм рт. ст., уже заставляет настораживаться, если же оно выше, то надо говорить о глаукоме.

При повышенном внутриглазном давлении повреждаются световоспринимающие элементы сетчатки, падает центральное и периферическое зрение. Это падение может быть кратковременным, так как повышенное давление вызывает отек роговицы (она становится несколько матовой, поверхность ее похожа на запотевшее стекло); обычно бывает и отек сетчатки. Проходит отек - восстанавливается зрение. При повреждении нервных элементов сетчатки вследствие высокого внутриглазного давления падение зрения стойкое. Восстановить его уже нельзя, если даже давление нормализуется. Этот момент предопределяет тактику лечения больного глаукомой. При глаукоме бывает нарушено и периферическое зрение (сужение поля зрения). Для глаукомы характерно сужение поля зрения с носовой стороны, эта патология называется «носовой скачок». Поле зрения может суживаться и концентрически со всех сторон.

В склере самым тонким местом является решетчатая пластинка. От повышенного внутриглазного давления на диске зрительного нерва атрофируется нервная ткань, а сама решетчатая пластинка прогибается назад. В норме - это плоское место, при глаукоме же получается углубление, по форме напоминающее полоскательную чашку. На дне ее виден атрофичный диск зрительного нерва, а по бокам перегибающиеся сосуды - экскавация диска зрительного нерва.

Представляет собой пространство, ограниченное задней поверхностью роговицы, передней поверхностью радужки и центральной частью передней капсулы хрусталика. Место, где роговица переходит в склеру, а радужка - в ресничное тело, называют углом передней камеры.

В его наружной стенке находится дренажная (для водянистой влаги) система глаза, состоящая из трабекулярной сеточки, склерального венозного синуса (шлеммов канал) и коллекторных канальцев (выпускников).

Через зрачок передняя камера свободно сообщается с задней. В этом месте она имеет наибольшую глубину (2,75-3,5 мм), которая затем постепенно уменьшается по направлению к периферии. Правда, иногда глубина передней камеры увеличивается, к примеру, после удаления хрусталика, либо уменьшается, в случае отслойки сосудистой оболочки.

Внутриглазная жидкость, заполняющая пространство камер глаза, сходна по своему составу с плазмой крови. В ней содержатся питательные вещества, обязательные для нормальной работы внутриглазных тканей и продукты обмена, далее выводимые в кровоток. Выработкой водянистой влаги заняты отростки цилиарного тела, это происходит путем фильтрации крови из капилляров. Образовавшаяся в задней камере, влага перетекает в переднюю камеру, оттекая потом сквозь угол передней камеры из-за более низкого давления венозных сосудов, в которые она в конечном итоге и всасывается.

Основной функцией камер глаза является поддержание взаимоотношений внутриглазных тканей и участие в проводимости света к сетчатке, а также в преломлении лучей света совместно с роговицей. Световые лучи преломляются благодаря сходным оптическим свойствам внутриглазной жидкости и роговицы, которые вместе выступают, как линза, собирающая световые лучи, вследствие чего на сетчатке появляется четкое изображение объектов.

Строение угла передней камеры

Угол передней камеры – это зона передней камеры, соотносящаяся с зоной перехода роговичной оболочки в склеру, и радужки в цилиарное тело. Важнейшая часть этой области - дренажная система, которая обеспечивает контролируемый отток внутриглазной жидкости в кровоток.

В дренажной системе глазного яблока задействована трабекулярная диафрагма, склеральный венозный синус, а также коллекторные канальцы. Трабекулярная диафрагма, представляет собой густую сеть, имеющую пористо-слоистую структуру, размер пор которой постепенно уменьшаются кнаружи, что помогает в регулировании оттока внутриглазной влаги.

У трабекулярной диафрагмы можно выделить

  • увеальную,
  • корнео-склеральную, а также
  • юкстаканаликулярную пластинки.

Преодолев трабекулярную сеть, внутриглазная жидкость попадает в щелевидное узкое пространство Шлеммова канала, расположенного у лимба в толще склеры окружности глазного яблока.

Есть и дополнительный путь оттока, вне трабекулярной сети, называемый увеосклеральным. Через него проходит до 15% всего объема оттекающей влаги, при этом жидкость из угла передней камеры поступает в цилиарное тело, проходит вдоль мышечных волокон, далее проникая в супрахориоидальное пространство. И только отсюда оттекает по венам выпускникам, сразу через склеру, или через Шлеммов канал.

Канальцы склерального синуса отвечают за отвод водянистой влаги в венозные сосуды по трем основным направлениям: в глубокое внутрисклеральное венозное сплетение, а также поверхностное склеральное венозное сплетение, в эписклеральные вены, в сеть вен цилиарного тела.

Патологии передней камеры глаза

Врожденные патологии:

  • Отсутствие угла в передней камере.
  • Блокада угла в передней камере остатками эмбриональных тканей.
  • Переднее прикрепление радужки.

Приобретенные патологии:

  • Блокада угла передней камеры корнем радужки, пигментом или др.
  • Мелкая передняя камера, бомбаж радужной оболочки – встречается при заращении зрачка или круговой зрачковой синехии.
  • Неравномерная глубина в передней камере – наблюдается при посттравматическом изменении положения хрусталика либо слабости цинновых связок.
  • Преципитаты на роговичном эндотелии.
  • Гониосинехии - спайки в углу передней камеры радужной оболочки и трабекулярной диафрагмы.
  • Рецессия угла передней камеры – расщепление, разрыв передней зоны цилиарного тела вдоль линии, которая разделяет радиальные и продольные волокна цилиарной мышцы.

Диагностические методы заболеваний камер глаза

  • Визуализация в проходящем свете.
  • Биомикроскопия (осмотр под микроскопом).
  • Гониоскопия (изучение угла передней камеры с помощью микроскопа и контактной линзы).
  • Ультразвуковая диагностика, включая ультразвуковую биомикроскопию.
  • Оптическая когерентная томография для переднего отрезка глаза.
  • Пахиметрия (оценка глубины передней камеры).
  • Тонометрия (определение внутриглазного давления).
  • Детальная оценка выработки, а также оттока внутриглазной жидкости.

Водянистая влага - особая бесцветная жидкость, которая наполняет обе камеры глаза. По консистенции приближается к желе, по химическому составу напоминает плазму, но при в ней меньше белка. Водянистая влага преломляет свет.

Водянистая влага обращается в переднем сегменте глазного яблока по эписклеральным и интрасклеральным венам. Она важна для обменных процессов, которые происходят в роговице, хрусталике и трабекулярном аппарате. В норме человеческий глаз содержит 300 мм 3 влаги, то есть, около 4% от полного объема.

Влага вырабатывается особыми клетками цилиарного тела из крови. При выработке человеческий глаз дает за минуту от 3 до 9 мл. жидкости, которая оттекает через эписклеральные сосуды, увеосклеральную систем и трабекулярную сеть. ВГД или показатель внутриглазного давления - это отношение произведенной влаги к выведенной.

Анатомические функции

Водяная влага содержит иммуноглобулины, глюкозу и аминокислоты, которые укрепляют и питают хрусталик, переднюю часть стекловидного тела, эндотелий роговицы и др. неваскуляризованные структуры глаза. Присутствие в водянистой влаге иммуноглобулинов и постояння циркуляция способствует удалению из внутренней части глаза потенциальных факторов повреждения.

Водяная влага содержит меньше мочевины и глюкозы в сравнении с плазмой, поскольку большую часть плазмы перерабатывает хрусталик. В состав влаги входит не > 0,02% белков, доля креатина, рибофлавина, гексозамина, гиалуроновой кислоты и других химических соединений. Отечественные ученые считают, что именно водянистая влага контролирует постоянный уровень pH путем глубокой переработки продуктов обмена веществ внутриглазных тканей.

Обращение водянистой влаги

Водянистую влагу вырабатыют отростки ресничного тела, включая строму, капилляры и два слоя эпителия.

Она попадает в заднюю камеру глаза, через зрачок - в переднюю камеру глаза. Благодаря высокой температуре водянистая влага поднимается на верх роговицы, затем опускаяется. После чего поглощается передней камерой глаза и по трабекулярной сетке переходит в шлеммов канал, возвращаяь в общий кровоток.

Заболевания, связанные с нехваткой водянистой влаги

Соблюдение нормального объема водянистой влаги - важная задача для хирурга-офтальмолога при оперативных вмешательствах. Потеря части влаги в процессе операций или травм может вызвать в дальнейшем гипотонию глаза. В подобном случаев важно скорее обратиться в офтальмологическую клинику для компенсации нормального уровня ВГД и восстановления объема водянистой влаги.

Также нарушения оттока водянистой влаги вызывают повышение ВГД и, как правило, развитие глаукомы.