Измерение твердости металлов.

Методы измерения твердости металлов. Одним из широко распространенных видов испытания металлов является определение твердости. Твердость металла можно определять прямыми и косвенными методами.

Прямые методы испытания на твердость состоят в том, что в образец вдавливают специальный твердый наконечник (из закаленной стали, алмаза или твердого сплава) различной формы (шарик, конус, пирамиду). После снятия нагрузки остается отпечаток, величина которого характеризует твердость образца.

При косвенных методах оцениваются свойства металла, пропорциональные его твердости.

Испытания на твердость могут быть статическими и динамическими. К первому виду относятся испытания методом вдавливания, ко второму - методом ударного вдавливания.

В зависимости от характера и способа приложения нагрузки твер­дость косвенно характеризует различные механические свойства метал­лов. Если наконечник вдавливается в образец, то твердость характеризует сопротивление пластической де­формации. Если наконечник цара­пает об-

разец, то твердость характеризует сопротивление разрушению. Твердость, определенная по отскоку наконечника, характеризует упругие свойства металла образца.

По значению твердости металла можно составить представление об уровне его свойств. Например, чем выше твердость, определенная вдав­ливанием наконечника, тем меньше пластичность металла, и наоборот.

Метод измерения твердости имеет ряд преимуществ перед другими методами механических испытаний металла: простота техники и быстрота испытаний, простота формы и небольшие размеры образцов, возможность проводить испытание непосредственно на изделии без его разрушения.

Твердость определяют на специальных приборах - твердомерах.

Твердомеры бывают стационарные и переносные. Принципиальное устройство твердомеров для всех методов испытаний на твердость одина­ково.

Основными узлами твердомеров являются станина, рабочий столик, наконечник (узел, состоящий из оправки и индентора), нагружающее уст­ройство, прибор для измерения величины деформации.

Общая схема испытания такова: деталь или образец помещают на рабочем столике, с помощью нагружающего устройства в образец вдавли­вают индентор и после снятия нагрузки определяют твердость.

В зависимости от цели испытания, свойств испытуемого металла, размеров образца выбирают форму, раз­мер и материал индентора, вели­чину и длительность приложения нагрузки.

Наиболее часто проводят определение твердости следующими ме­тодами: измерение твердости по Бринеллю - по ГОСТ 9012 - 59; измере­ние твердости по Роквеллу - по ГОСТ 9013 - 54; измерение твердости по Виккерсу - по ГОСТ 2999 - 75; изменение твердости методом ударного отпечатка - по ГОСТ 18661 - 73; измерение микротвердости вдавлива­нием алмазных наконечников - по ГОСТ 9450 - 76.

Существуют общие требования к подготовке образцов и проведе­нию испытаний:

1. Изготовление образцов и подготовка поверхности должны осуществляться способами, исключающими изменения свойств металла из-за нагрева или наклепа.

2. Поверхность образца должна быть чистой, без окислых пленок, следов ржавления или окалины, трещин и прочих дефектов.

3. Образцы должны быть определенной толщины. После нанесения отпечатка на обратной стороне образца не должно быть следов деформации.

4. Образец должен лежать на столике жестко и устойчиво. В процессе испытания образец не должен смещаться или прогибаться.

5. Прилагаемая нагрузка должна действовать перпендикулярно к поверхности образца.

6. Нагрузка должна прилагаться и возрастать плавно до заданного значения, а далее поддерживаться постоянной в течение определенного времени.

Измерение твердости по Бринеллю. При определении твердости методом Бринелля в испытуемый образец или изделие вдавливается в течение определенного времени металлический шарик (рис. 5). После снятия нагрузки на поверхности образца остается сферический отпечаток. Величина отпечатка зависит от твердости металла: чем тверже металл, тем меньше будет величина отпечатка. Число твердости по Бринеллю обозначается НВ.

Рис. 5. Схема расположения отпечатка при определении твердости методом Бринелля

Чтобы определить число твердости НВ (МПа или кгс/мм 2), надо величину приложенной нагрузки Р разделить на площадь отпечатка F :

,

где D - диаметр шарика, м (или мм);

d - диаметр отпечатка, м (или мм);

Чтобы не производить каждый раз вычисления, при определении числа твердости пользуются специально cоставленной таблицей (приложение к ГОСТ 9012- 59). Зная нагрузку, диаметры шарика и отпечатка, по этой таблице можно определить число твердости НВ.

Для испытания применяют шарики из закаленной стали или твер­дого сплава диаметром 2,5; 5,0 и 10 мм. Диаметр шарика выбирают в за­висимости от толщины испытуемого образца и его твердости: чем тоньше и тверже образец, тем меньше должен быть диаметр шарика. Обычно ис­пытание проводят на специально подготовленной горизонтальной пло­щадке образца.

Толщина испытуемого образца должна быть не меньше десятикрат­ной глубины отпечатка. Глубину отпечатка определяют пробным испытанием или, если известен уровень твердости, по формуле

где h - глубина отпечатка;

D - диаметр шарика;

НВ - число твердости.

Между временным сопротивлением и числом твердости HB существует следующая зависимость:

Для стали σ в = 0,34 HB;

Для медных сплавов σ в = 0,45 HB;

Для алюминиевых сплавов σ в = 0,35 HB.

Расстояние от центра отпечатка до края образца дол­жно быть не менее 2,5d ,а между центрами двух соседних отпечатков - не менее 4d .Диаметр отпечатка d измеряют при помощи лупы или отсчетного микроскопа (рис. 6) в двух взаимно перпендикулярных направлениях и определяют среднее арифметическое из двух определений.

В зависимости от твердости металла нагрузка на шарик может изменяться от 15,6 до 3000 кгс. Чтобы результаты испытаний были сопоставимы при любом диаметре взятого шарика, между нагрузкой и диаметром шарика должно выдерживаться соотношение: P = 2,5D 2 , Р = 10D 2 , P = = 30D 2 .

Длительность приложения нагрузки должна быть достаточной для прохождения деформации и возрастать с уменьшением твердости испытуемого металла от 10 до 30 и 60 с.

При выборе диаметра шарика D ,нагрузки Р , продолжительности выдержки под нагрузкой t и минимальной толщины образца руководствуются табл. 1.

Запись результатов испытания проводится следующим образом. Если испытание проводится шариком диаметром D = 10 мм под нагрузкой Р = 3000 кгс с выдержкой D = 10 с, то записывается число твердости с cимвoлoм НВ. Например, твердость стали 350 НВ. Если условия испытания иные, то это показывается соответствующими индексами. Например, число твердости 230 и испытание проводилось шариком диаметром D = 5,0 мм при нагрузке 750 кгс с выдержкой под нагрузкой 10 с. В этом случае результаты записываются так: НВ 5/750/10/230.

Рис. 6. Измерение диаметра отпечатка по шкале лупы

Таблица 1

Выбор параметров испытания при определении твердости

методом Бринелля

Материал Интервал твердости в числах Бринелля Минимальная толщина испытуемого образца, мм Соотношение между нагрузкой Р и диаметром шарика Диаметр шарика D, мм Выдержка под нагрузкой, с
Черные металлы 140-150 От 6 до 3 От 4 до 2 <2 P = 30D 2 10,0 5,0 2,5 187,5
<140 >6 От 6 до 3 <3 P = 10D 2 10,0 5,0 2,5 62,5
Цветные металлы >130 От 6 до 3 От 4 до 2 >2 P = 30D 2 10,0 5,0 2,5 187,5
35-130 От 6 до 3 От 6 до 3 <2 P = 10D 2 10,0 5,0 2,5 62,5
8-35 >6 От 6 до 3 <3 P = 2,5D 2 10,0 5,0 2,5 62,5 15,6

Измерение твердости по Роквеллу. При измерении твердости этим методом алмазный конус или стальной шарик вдавливается в испытуемый образец под действием общей нагрузки Р. Причем сначала прилагается предварительная нагрузка Р 0 , а затем основная P 1 , т. е. Р = Р 0 + P 1 . Твердость определяют по глубине отпечатка (рис. 7). За единицу твердости по Роквеллу принята условная величина, соответствующая осевому перемещению наконечника на 0,002 мм. В зависимости от твердо­сти испытуемого образца испытание проводят вдавлива­нием алмазного конуса или шарика при различной величине основной и общей нагрузки. При испытании твердость можно измерять по трем шкалам: А, В и С (табл. 2).

Поверхность для испытания может быть плоской и криволинейной. Радиус кривизны поверхности должен быть не менее 15 мм. Минимальная толщина образца должна быть не меньше восьмикратной глубины внедре­ния индентора после снятия основной нагрузки P 1 .

При измерении твердости расстояние между центрами двух соседних отпечатков или расстояние от центра отпечатка до края образца должно быть не менее 3,0 мм. На каждом образце проводят не менее трех измерений.

Рис. 7. Схема испытания на твердость по методу Роквелла

Таблица 2

Выбор параметров при определении твердости методом Роквелла

Измерение твердости по Виккерсу. При измерении твердости по этому методу в образец вдавливается алмазный наконечник, имеющий форму правильной четырехгранной пирамиды. Нагрузка Р действует в течение определенного времени.

Величина нагрузки может быть следующей: 1,0; 2,0; 5,0; 10,0; 20,0; 30,0; 50,0; 100,0 кгс. Чем больше нагрузка, тем более точным получается результат.

Продолжительность выдержки образца под нагрузкой составляет обычно 10-15 с.

Поверхность испытуемого образца должна быть хорошо подготовлена - шероховатость ее не должна превышать 0,16 мкм. Минимальная толщина стального образца должна быть больше диагонали от­печатка в 1,2 раза, а образцов из цветных металлов в 1,5 раза. Радиус кривизны по­верхности должен быть не менее 5 мм.

Отпечатки ставят так, чтобы расстояние между центром отпе­чатка и краем образца или краем соседнего отпечатка было не ме­нее 2,5 длины диагона­ли отпечатка (рис. 8).

Рис. 8. Схема расположения отпечатка при определении твердости методом

Виккерса

Погрешность при измерении диагоналей должна быть не более ±0,001 мм при длине диагонали до 0,2 мм, а при большей длине не более 0,5%.

Твердость по Виккерсу (HV) вычисляют по формуле:

,

α - угол между противополож­ными гранями пирамиды при вершине, равный 136°;

d - среднее арифметическое значение длин обеих диагоналей отпечатка после снятия на­грузки, мм.

Если испытания прово­дятся в стандартных усло­виях, то, чтобы не прово­дить вычисления, пользуются таблицей (приложение к ГОСТ 2999-75), в которой приведена твердость в зави­симости от длины диагонали отпечатка при различной нагрузке.

При записи результатов испытаний в обычных усло­виях твердость по Виккерсу обозначается символом HV. Обычными условиями испытания считаются нагрузка 300 Н (30 кгс) и время выдержки 10-15 с. В этом случае твердость записывается,например, HV 300. Если условия испытания другие, то это указывается индексами, причем сначала указывается величина нагрузки, потом время выдержки. Например, запись HV 20/40 - 250 значит, что при нагрузке 200 Н (20 кгс) и времени выдержки 40 с твердость по Виккерсу 250.

Все мы знаем, что каждый материал на земле обладает разными свойствами: физическими, химическими, механическими, технологическими, эксплуатационными и многими другими. Также сюда можно отнести и твердость. Все они вместе позволяют предопределить их применение в той или иной сфере человеческой жизнедеятельности. Но что такое твердость металлов, сплавов или любых других материалов? Среди прочих свойств это наиболее интересно, поскольку нет четкого его определения.

Что представляет собой твердость?

Твердость любого материала является его важной характеристикой, поскольку от этого зависит стойкость и долговечность изготавливаемых конструкций. А так как четкого определения нет, то сам термин можно «расшифровать» так - это свойство материала оказывать сопротивление проникновению в него другого тела (инструмента). Эта характеристика позволяет оценить качество многих объектов:

  • металла (сплавы);
  • керамики;
  • древесины;
  • пластика;
  • камня;
  • графита.

Помимо этого, твердость влияет на степень обработки того или иного материала. То есть чем он тверже, тем труднее с ним работать. Справедливо и обратное. Поэтому с деревом приятно иметь дело при изготовлении различных поделок.

У разных специалистов свое понятие твердости. К примеру, в области минералогии под этим определением понимается сопротивление одного материала к появлению царапин при воздействии другого объекта.

В металлургии несколько иначе понимают, что такое твердость - сопротивляемость пластической деформации. Но основное определение, на которое ссылается большинство специалистов любой профессии, уже приведено в самом начале раздела.

Тем не менее твердость может проявляться по-разному:

  • жесткость;
  • сопротивляемость:
    • царапанию;
    • истиранию;
    • резанию;
  • деформация:
    • изгиб;
    • излом;
    • изменение формы.

Чем выше величина твердости, тем большая степень сопротивляемости у материала. Исходя из такого многообразия проявления такого свойства, существуют разные способы по его измерению.

Способы измерения твердости

Что характерно, испытание на твердость проводится чаще, чем определение всех остальных свойств материалов - прочности, относительного удлинения и прочих. Способов узнать, насколько тверда сталь или любой другой минерал, несколько. Но все они основываются на общем принципе: на испытываемый образец воздействуют другим объектом, прилагая определенное давление. Это может быть шарик, пирамида, пуансон.

Определение твердости производится по глубине внедрения и показателям давления. Минимальные усилия и большая глубина говорят о низких свойствах материала. Равносильно и наоборот, большие усилия и малая глубина - твердость высокая.

При этом испытания могут быть двух основных видов:

  • Статические.
  • Динамические.

Если контакт исследуемого образца и объекта происходит в течение определенного промежутка времени, то испытание носит статичный характер. В ином случае речь идет о динамичном способе определения твердости.

В настоящее время для определения твердости материалов применяют:

  • Метод Виккерса (ГОСТ 2999-75).
  • Метод Бринелля (ГОСТ 9012-59).
  • Метод Роквелла (ГОСТ 9013-59).
  • Метод Шора.
  • Метод Мооса.

Выбор того или иного испытания зависит от специфики применения деталей, необходимой точности результата, а также способности воспроизвести исследования при различных условиях.

Способ Виккерса

Что такое твердость по Виккерсу? Суть данной методики заключается во вдавливании пирамиды, изготовленной из алмаза, в образец. У пирамидального индентора соотношение сторон должно быть строго определенным. В результате проведения испытания на исследуемом образце остается ромбовидный отпечаток, причем иногда он может быть неправильной формы.

Твердость обознается двумя латинскими буквами - HV - и устанавливается в зависимости от значения диагонали полученного ромба. Иногда используется среднее арифметическое значение обеих диагоналей.

Оборудование, с помощью которого измеряется твердость по Виккерсу, относится к статичному типу и может быть стационарным либо переносным. При этом сама процедура выполняется следующим образом:

  • Образец помещается на рабочий стол оборудования исследуемой поверхностью кверху. Затем она вместе со столом поднимается вверх до легкого соприкосновения с рабочим наконечником.
  • При помощи реле времени задается определенный час воздействия, после чего остается опустить рычаг, который приводит в действие нагружающий механизм. По окончании времени испытания нагрузка с детали снимается и наконечник возвращается в прежнее положение.
  • Оборудование оснащено отсчетным микроскопом, поэтому после завершения операции нужно развернуть стол с образцом к нему и измерить диагонали отпечатка.

В некоторых случаях твердость стали или любого другого материала по данной методике указывается со значением нагрузки. К примеру, такое обозначение HV 50 940 говорит о том, что твердость равна 940 единиц при воздействии нагрузки, равной 50 кг.

Достоинствами данного способа испытания являются:

  • Можно измерять детали практически с любой толщиной за счет малой площади поверхности, которую занимает индентор (самое крайнее положение).
  • Высокая точность результата, что обусловлено идеальной степенью твердости алмазного наконечника. Как следствие, сам он не подвержен деформации.
  • Диапазон измерений довольно широкий и способен охватывать как относительно непрочные металлы наподобие алюминия и меди, так и высокопрочные стали, сплавы.
  • Есть возможность определения твердости отдельно взятого слоя металлов. К примеру, образец прошел процесс цементации либо у детали изменен химический состав вследствие поверхностного упрочнения или легирования.

Как показывает практика, диапазон измерений твердости составляет от 145 до 1000 HV. Чтобы измерить твердость большой партии образцов, существует автоматизированное оборудование компании Reicherter из Германии, имеющее гидравлический или электромеханический привод. Расчет результата проводится автоматизировано, после чего выводится на монитор.

Твердость по Бринеллю

Твердость по этому методу обозначается тоже двумя, но уже другими буквами - HB - и тоже является статичным испытанием. Температура при исследовании должна быть в пределе 20±10 °С. Его суть в следующем - образец сдавливается стальным закаленным шариком. Также в комплекте к оборудованию имеется еще один шарик, который изготовлен из вольфрамокобальтового твердого сплава. Это позволяет увеличить диапазон измерения твердости.

Согласно стандарту, определены некоторые условия в отношении того, что такое твердость по Бринеллю:

  • Нагружать образец стоит в пределах от 12,25 до 29420 Н.
  • Размер шариков составляет 1-10 мм.
  • Длительность воздействия не должна превышать 10-15 с.
  • Отпечаток на образце не должен выходит за пределы: 0,2-0,7 D (D - диаметр шарика.)

Процесс измерения проходит так:

  • Образец помещается на стол и закрепляется по упору.
  • На приводе ставится необходимое значение нагрузки, после чего задействуется шпиндель.
  • По окончании процедуры рабочий наконечник принимает первоначальное положение. На экране можно увидеть стрелочный индикатор, который укажет величину диаметра отпечатка. Сама твердость устанавливается с помощью таблицы, расположенной на станине оборудования. Если необходимо поменять нагрузку, то для этого есть комплект переустанавливаемых штырей.

Существуют переносные инструменты, которые хорошо использовать в полевых условиях. Они оснащены струбциной, к которой крепится образец, а нагрузка создается рукояткой.

Рабочий диапазон по измерению твердости сплавов составляет 8-450 HB, что соответствует большинству марок сталей и сплавов, которые используются в производстве разных металлоконструкций. Но стоит только превысить верхний предел измерений, как точность уже не соответствует действительности, что обусловлено деформацией индентора. Не рекомендуется использовать твердосплавные шарики, если ожидаемая твердость 350-450 HB.

Главным преимуществом метода Бринелля можно считать возможность определять твердость горячих образцов. В то же время нельзя определить ее на кромках или краях деталей либо у тонких образцов.

Метод Роквелла

Буквы, обозначающие твердость по Роквеллу, - это HR. При этом методе в образец вдавливается стальной шарик либо алмазный конус.

Испытание проводится при следующих условиях:

  • Предварительно образец нагружается, что позволяет избежать влияния ряда поверхностных факторов: шероховатость, температура, скорость внедрения индентора.
  • Производится основная нагрузка, по которой проводится расчет результата.
  • Процедура завершается снятием нагрузки.

Если данный метод сравнивать с предыдущими способами определения твердости, то здесь фигурируют три шкалы.

  • A - обозначается HRA, индентор - алмазный конус, диапазон измерений: 60-80 HRA. Применима к высокоуглеродистым легированным инструментальным сталям, а также твердым сплавам.
  • B - обозначается HRB, индентор - закаленный шарик, диапазон измерений: 35-100 HRB. Это уже стали средней твердости и сплавы цветных металлов.
  • C - обозначается HRC, индентор - алмазный конус, диапазон измерений: 20-90 HRC. Для сталей средней твердости.

Если речь заходит про специфические условия вычисления твердости, к примеру, холоднокатаная тонколистовая сталь, то используется методика Супер-Роквелла с обозначением твердости HRN и HRT.

Оборудование тоже может быть как стационарным, так и переносным. При этом первый тип управляется при помощи электромеханического либо гидравлического привода.

Измерения по Роквеллу проводить сложнее, поскольку необходимо задавать первичную, а потом вторичную скорость перемещения индентора. К тому же алмазный рабочий наконечник имеет форму конуса, что отражается на получении результата. И определить размеры полученного отпечатка здесь гораздо сложнее.

Твердость по Шору

Метод Шора обладает главной отличительной чертой. Все описанные выше способы определения твердости металлов и прочих материалов обладали общим недостатком - на поверхности исследуемого образца появляется отпечаток. В этом случае при необходимости испытываемую деталь невозможно обратно установить в узел либо конструкцию. Методика Шора полностью исключает такую деформацию.

К тому же замер, к примеру, твердости стали, относится уже к испытанию динамического типа, и его суть сводится к следующему. К поверхности исследуемого образца подводится склероскоп (портативный твердомер), внутри которого находится стальной баек с наконечником из алмаза. Твердость определяется так: чем мягче материал, тем меньшим будет расстояние отскока, вследствие поглощения удара самим материалом. А чем тверже образец, тем большим будет отскок.

Диапазон измерений составляет от 30 до 140 HS. Закаленная высокоуглеродистая сталь соответствует значению 100 HS. А поскольку оборудование не повреждает поверхность изделий, то оно актуально для испытаний тех деталей, которые входят в конструкцию действующего узла или агрегата.

Методика проста в реализации, оценка производится довольно быстро и деталь можно снова установить в узел. Все это можно считать главными преимуществами. Тем не менее есть некоторые ограничения.

Шкала твердости HS не имеет стандарта, но есть таблицы и графики, которые позволяют перевести единицы по ШОРу в значения HV, HR или HB. На расстояние отскока бойка влияет такая характеристика, как модуль Юнга. Поэтому невозможно сопоставить единицы HS разных материалов.

К тому же твердость по ШОРу - это всего лишь сравнительное значение. Вдобавок точность результатов заметно ниже, чем у всех перечисленных выше аналогов.

Шкала Мооса

Немецкий ученый Фридрих Моос еще в далеком 1811 году предложил свой способ определения твердости разных материалов. При этом его шкала содержит значения от 1 до 10, что соответствует самым распространенным минералам, начиная с талька (самый мягкий камень) и заканчивая алмазом (самый твердый).

Сама методика очень проста и основывается на сопротивляемости исследуемого образца царапанию. К примеру, объект B может поцарапать тело C, но никак не воздействует на деталь A. Или, напротив, материал A только слегка царапает деталь B, но может сильно повредить объект C.

Несмотря на то что способ определения твердости по шкале Мооса был предложен чуть более двух веков назад, он успешно применяется по сей день. Только полученный результат дает далеко не полную информацию, поскольку здесь нет абсолютных значений и невозможно определить соотношение по твердости. Иными словами, нельзя сказать, во сколько раз один из материалов тверже либо мягче другого.

Эталоны твердости Мооса

В качестве эталона по определению твердости по методу Мооса берутся эти 10 минералов (далее в скобках будет указан присвоенноезначение):

  1. Тальк.
  2. Гипс.
  3. Кальцит.
  4. Флюорит.
  5. Апатит.
  6. Ортоклаз.
  7. Кварц.
  8. Топаз.
  9. Корунд.
  10. Алмаз.

Что же представляют собой эти минералы? Опишем их все вкратце ниже.

Первая пятерка

Тальк настолько мягок, что можно царапнуть ногтем. Такая же твердость у карандашей (точнее графита). По шкале соответствует единице. Многим людям он хорошо известен, так как из него изготавливается детская присыпка.

Следующий по твердости - это гипс (2), который тоже легко царапается и имеет особенное свойство. Стоит его измельчить в порошок и смешать с водой - получится пластинчатая масса, которой можно придать любую форму. Помимо белого цвета, есть оригинальные варианты желтого оттенка.

На третьем месте кальцит не случайно (3). Ногтем его уже не поцарапать, зато это можно сделать медной монетой. Такая же степень твердости у золота и серебра. Его второе название - биоминерал, и именно из него состоят раковины.

Флюорит по-другому именуется как плавиковый шпат и переводится как «текучий». Ни ногтем, ни монетой он не царапается, чего нельзя сказать про стекло или обычный нож. Его твердость, как можно понять, - 4.

На пятом месте располагается апатит (5), который еще поддается царапанию при помощи ножа или стекла (такой же характеристикой может похвастать лазурит). При помощи этого минерала добывается фосфор либо фосфорная кислота.

Вторая пятерка

Шестым в списке идет ортоклаз, который уже не берет стекло, но напильнику он противостоять не сможет. Для промышленности он ценен как источник для производства электрокерамики и фарфора. Аналогичная твердость у опала, только его нельзя использовать в качестве эталона, поскольку есть много его разновидностей и у всех свои прочностные характеристики.

На седьмом месте в нашем «рейтинге» свойств твердости располагается всем известный кварц, что соответствует его показателю - 7. Многие знают его как обычный песок. Однако он может быть и в прочих формах: в виде горного хрусталя, агата, аметиста.

Среди рассмотренных минералов самым твердым является топаз (8). Он с трудом поддается обработке, и в большинстве случаев для этого используется алмаз. Впервые он был обнаружен на острове Топазиос, что расположен в Красном море. Отсюда и пошло его название.

Корунд вроде бы идентичен по твердости алмазу, тем не менее при помощи других методик были определены его характеристики. И как итог - алмаз гораздо тверже корунда (в 90-180 раз). Рубины и сапфиры тоже приравниваются к этому минералу, а за счет своей твердости он идеально подходит для изготовления абразивных инструментов.

Замыкает всю десятку алмаз, которому из всех существующих минералов нет равных по части прочности, и его показатель по шкале твердости - заслуженная 10!

Определение твердости материалов

Твердостью называется способность материала сопротивляться проникновению в него другого, более твердого материала. Высокой твердостью должны обладать металлорежущие инструменты: резцы, сверла, фрезы, ножовочные полотна и др. Детали машин, как правило, должны иметь среднюю твердость, т.к. при большой твердости их будет трудно обрабатывать на станках, а если они будут мягкими, то на их поверхности могут образоваться вмятины и царапины. Кроме того, при средней твердости прочность удачно сочетается с вязкостью. Твердость материала определяется сравнительно просто и быстро. Поэтому определение твердости – это самый распространенный вид механических испытаний материалов.

Твердость материала простейшими способами определяется с помощью напильника, зубила или керна. Чем мягче материал, тем легче срезается металл напильником. Так, у закаленных сталей при работе напильником практически не видно царапин на поверхности, а алюминиевые детали легко повреждаются не только напильником, но и просто острым предметом. Мягкие металлы легко перерубаются зубилом при небольших усилиях, а твердые – при значительных.

Твердость металлов в производственных условиях определяется тремя способами,

Названными по именам их изобретателей: способы Бринелля, Роквелла и Виккерса.

Метод Бринелля основан на том, что в металл под нагрузкой Р вдавливают закаленный стальной шарик (рис.2) определенного диаметра D и по величине диаметра отпечатка d судят о его твердости. Твердость по Бринеллю (НВ) определяется из выражения:

, кгс/мм 2 ,

где – нагрузка, кгс (кН); – площадь поверхности отпечатка, мм 2 .

Нагрузка Р, диаметр шарика D и продолжительность выдержки шарика под нагрузкой выбираются в зависимости от вида материала, толщины образца и предполагаемой твердости по таблице 1. После нагружения шарика нагрузкой Р и выдержки под этой нагрузкой измерительной лупой определяют диаметр отпечатка d. По выше приведенной расчетной формуле или диаметру отпечатка в таблице 1 при шарике диаметром 10 мм и нагрузке30 кН (3000 кгс) находят соответствующее число твердости НВ, например, при диаметре отпечатка d = 3,5 мм будет твердость металла НВ 302.

Твердость НВ, измеренная по методу Бринелля, для ряда металлов, связана эмпирической зависимостью с пределом их прочности при растяжении s В:

s В =0,35 НВ – для сталей,

s В =0,45 НВ – для медных сплавов.

Таблица 1.

Зависимость режимов испытания (D, Р, t)

от твердости и толщины испытываемого образца

К недостаткам метода Бринелля необходимо отнести невозможность испытания металлов, имеющих твердость более НВ 450, или толщину менее 2 мм, появление остаточных следов деформации на поверхности испытанного изделия. При испытании металлов с твердостью более НВ 450 возможна деформация шарика, вследствие чего результаты будут неточными.



Метод Роквелла основан на том, что в испытуемый образец вдавливается индентор (тело внедрения): алмазный конус с углом при вершине 120° или закаленный стальной шарик диаметром 1,59 мм. Алмазный конус используют для твердых металлов, а шарик – для мягких. Алмазный конус или шарик (рис.3) вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок – предварительной Р 0 , равной 0,1 кН (10 кгс), и основной Р 1 .

При вдавливании алмаза к нему прилагается общая нагрузка Р = Р 0 +Р 1:

0,6 кН (60 кгс) – шкала твердомера А;

или 1,5 кН (150 кгс) – шкала твердомера С.

При вдавливании шарика прилагается общая нагрузка 1кН (100кгс)– шкала твердомера В.

Соответственно этим нагрузкам на индикаторе прибора имеются шкалы: черные А и С и красная В. Шкалой А пользуются при измерении твердости изделий с очень твердым поверхностным слоем, полученным посредством химико-термической обработки (цементация, азотирование и др.), а также твердых сплавов с твердостью до HRA 85. Шкалой В пользуются при измерении твердости незакаленных сталей, цветных металлов и сплавов , имеющих твердость до HRB 100. Шкалой С пользуются при измерении твердости закаленных сталей , обладающих твердостью до HRС 67. Числа твердости по Роквеллу измеряются в условных единицах и определяются при вдавливании алмазного конуса по формулам:

где 100 – число черных делений шкалы С и шкалы А циферблата индикатора прибора, а 130 – число красных делений шкалы В; h 0 – глубина (мм) внедрения алмаза (шарика) под действием предварительной нагрузки; h – глубина (мм) внедрения алмаза (шарика) под действием общей нагрузки Р, замеренной после ее снятия, но с оставлением предварительной нагрузки; 0,002 мм – глубина внедрения алмаза (шарика), соответствующая перемещению стрелки индикатора на одно деление.

Метод Роквелла отличается простотой и высокой производительностью, практически обеспечивает сохранение качества поверхности после испытаний, позволяет испытывать металлы и сплавы как низкой, так и высокой твердости при толщине изделия (слоя) до 0,8 мм. Этот метод не рекомендуется применять для сплавов с неоднородной структурой (чугуны: серые, ковкие и высокопрочные). Соотношение твердостей материалов, замеренных этими двумя различными способами, видно из таблицы 2.

Таблица 2.

Соотношение чисел твердости по Бринеллю и Роквеллу

Твердость Твердость Твердость
По Роквеллу По Бринеллю По Роквеллу По Бринеллю По Роквеллу По Бринеллю
шкала D=10 мм, Р = 3000 кгс шкалы D=10 мм, Р=3000 кгс шкала D=10 мм, Р=3000 кгс
С Диаметр отпечатка, мм HB C B Диаметр отпечатка, мм НВ В Диаметр отпечатка, мм HB
HRC HRC HRB HRB
2,20 3,40 4,60
2,25 3,45 4,65
2,30 3,50 4,70
2,35 3,55 4,75
2,40 3,60 4,80
2,45 3,65 4,85
2,50 3,70 4,90
2,55 3,75 4,95
2,60 3,80 5,00
2,65 3,85 5,05
2,70 3,90 5,10
2,75 3,95 5,15
2,80 4,00 5,20
2,85 4,05 5,25
2,90 4,10 5,30
2,95 4,15 5,35
3,00 4,20 5,40
3,05 4,25 5,45
3,10 4,30 5,50
3,15 4,35 5,55
3,20 4,40 5,60
3,25 4,45 5,65
3,30 4,50 5,70
3,35 4,55 5,75


, кгс/мм 2 ,

где – угол между противоположными гранями пирамиды при вершине, равный 136°; – среднее арифметическое значение длины обеих диагоналей отпечатка после снятия нагрузки в мм.

При испытаниях применяют нагрузки, равные 50, 100, 200, 300, 500 и 1000 Н. Возможность применения малых нагрузок в 50 и 100 Н позволяет определять твердость деталей малой толщины и тонких поверхностных слоев, например: цементированных, цианированных и азотированных сталей.

В табл. 3 представлены варианты обозначения твердости различных материалов.

Таблица 3.

Варианты материалов с различной твердостью*

№ варианта Значения твердости материалов
HB 280 HRA 72 HB 470 HB 780 HRA 74 HV 130 HB 110 HRB 50 HV 530 HB 430 HRC 47 HV 420 HB 477 HRC 54 HV237 HRB 77 HRC 50 HRA 82 HRB 70 HRC 27
HB 480 HRC 80 HV 280 HB 280 HB 470 HB 130 HV 130 HRA 30 HV 130 HRB 50 HRC 37 HRA 47 HRC 47 HRC 47 HB 477 HRB 67 HRB 67 HRA 77 HRB 77 HRA 82
HB 780 HB 480 HRC 80 HB 410 HRC 45 HV 530 HB 130 HV 130 HRC 66 HB 170 HRC 54 HRC 37 HRA 47 HV 340 HRA 57 HRB 70 HRB 67 HRB 67 HRB 77 HV 230
HRC 53 HB210 HV 280 HRC 51 HV 234 HV 430 HRC 35 HB 130 HRA 70 HRC 43 HB 630 HRB 75 HRC 37 HV 313 HRB 327 HRA 85 HV 150 HRA 77 HB 260 HRC 57
HB 170 HRA 67 HRC 54 HRC 51 HV 434 HRA 60 HRC 76 HV 150 HRA 70 HRC 56 HV 330 HB 700 HB 437 HV 313 HB 210 HRC 75 HV 310 HRA 57 HB 260 HRC 29

Числа твердости по Виккерсу и по Бринеллю имеют одинаковую размерность и для материалов твердостью до НВ 450 практически совпадают. Вместе с тем измерения пирамидой дают более точные значения для материалов с высокой твердостью, чем измерения с использованием шарика или конуса. Алмазная пирамида имеет большие угол в вершине и диагональ ее отпечатка, что повышает точность измерения отпечатка даже при проникновении пирамиды на небольшую глубину. Диагональ отпечатка измеряют с помощью измерительного микроскопа, вмонтированного в твердомер Виккерса.

В настоящее время имеются более удобные (портативные, с цифровой индикацией твердости по Бринеллю и Роквеллу, с относительно небольшой погрешностью измерений) в работе твердомеры. Так, твердомер динамический ЭЛИТ-2 измеряет твердость стальных изделий по скорости отскока бойка от поверхности, а твердомер ультразвуковой УЗИТ-3 - методом измерения акустического импеданса при внедрении магнитостриктора с алмазом Виккерса в поверхность изделия.

Метод определения восстановленной твёрдости.

Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объёму отпечатка. Различают поверхностную , проекционную и объемную твёрдость:

  • поверхностная твёрдость - отношение нагрузки к площади поверхности отпечатка;
  • проекционная твёрдость - отношение нагрузки к площади проекции отпечатка;
  • объёмная твёрдость - отношение нагрузки к объёму отпечатка.

Твёрдость измеряют в трёх диапазонах: макро , микро , нано . Макродиапазон регламентирует величину нагрузки на индентор от 2 до 30 кН. Микродиапазон (см. микротвёрдость) регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2 мкм . Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм . Часто твёрдость в нанодиапазоне называют нанотвердостью (nanohardness). Величина нанотвердости может значительно отличаться от микротвёрдости для одного и того же материала. .

Измеряемая твёрдость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта , в англоязычной литературе - indentation size effect . Характер зависимости твердости от нагрузки определяется формой индентора:

  • для сферического индентора - с увеличением нагрузки твёрдость увеличивается - обратный размерный эффект (reverse indentation size effect );
  • для индентора в виде пирамиды Виккерса или Берковича - с увеличением нагрузки твёрдость уменьшается - прямой или просто размерный эффект (indentation size effect );
  • для сфероконического индентора (типа конуса для твердомера Роквелла) - с увеличением нагрузки твёрдость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для конической части индентора).

Методы измерения твёрдости

Методы определения твёрдости по способу приложения нагрузки делятся на: 1) статические и 2) динамические (ударные).

Для измерения твёрдости существуют несколько шкал (методов измерения):

  • Метод Бринелля - твёрдость определяется по диаметру отпечатка, оставляемому твердосплавным шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга (твёрдость по Мейеру)); размерность единиц твердости по Бринеллю МПа (кгс/мм²). Твёрдость, определённая по этому методу, обозначается HBW, где H - hardness (твёрдость, англ. ), B - Бринелль, W - материал индентора, затем указывают диаметр индентора, нагрузку и время выдержки. Стальные шарики в качестве инденторов для метода Бринелля уже не используются.
  • Метод Роквелла - твёрдость определяется по относительной глубине вдавливания стального, твердосплавного шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HRA, HRB, HRC и т.д.; твёрдость вычисляется по формуле HR = 100 (130) − h/e , где h - глубина относительного вдавливания наконечника после снятия основной нагрузки, а e - коэффициент, равный 0,002 мм для метода Роквелла и 0,001 мм для супер Роквелла. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B - 130 единиц. Всего существует 54 шкалы измерения твердости по Роквеллу.
  • Метод Виккерса - твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади поверхности отпечатка (причём площадь поверхности отпечатка берётся как площадь части геометрически правильной пирамиды, а не как площадь поверхности фактического отпечатка); размерность единиц твёрдости по Виккерсу кгс/мм² . Твёрдость, определённая по этому методу, обозначается HV с обязательным указанием нагрузки и времени выдержки.
  • Методы Шора:
  • Дюрометры и шкалы Аскер - по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами .
Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал, это - не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости.

Для инструментального определения твёрдости используются приборы, именуемые твёрдомерами . Методы определения твёрдости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ МЕТАЛЛОВ

Определение твердости является одним из распространенных испытаний металлов. Оно отличается простотой техники, быстротой измерений и возможностью проведения их непосредственно на изделии.

Твердость металлов измеряют при помощи воздействия на их поверхность специального наконечника (индентора), изготовленного из малодеформирующегося материала (закаленная сталь, алмаз, твердый сплав) и имеющего форму шарика, конуса, пирамиды или иглы.

По способу воздействия индентора на испытуемый материал различают:

* статические методы определения твердости (метод вдавливания и метод царапания);

* динамические методы определения твердости (метод отскока падающего наконечника) и другие методы.

Метод вдавливания характеризует сопротивление металла пластической деформации при внедрении в него индентора из более твердого материала. Метод царапания характеризует сопротивление разрушению при воздействии на материал индентора в виде алмазной иглы. Метод отскока падающего наконечника характеризует сопротивление упругой деформации при динамическом воздействии на материал индентора в виде шарика.

Самым распространенным из перечисленных методов является метод вдавливания, который используется в приборах - твердомерах:

Роквелла

Виккерса

приборе для определения микротвердости (ПМТ).

Между твердостью пластичных материалов и другими механическими свойствами существует зависимость. Чем больше твердость металла определяемого вдавливанием, тем выше и его прочность, т.к. оба эти свойства представляют сопротивление пластической деформации. По этой же причине, чем тверже данный металл, тем ниже его пластичность.


Принципиальное устройство перечисленных твердомеров одинаково и может быть рассмотрено на примере прибора Бринеля (рис. 1). Основными узлами твердомеров являются станина, рабочий столик для измерения твердости образца или детали, наконечник (индентор), нагружающее устройство и прибор для измерения деформации.

Рисунок 1 – Устройство прибора Бринеля

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЮ

Измерение твердости по Бринелю производится в соответствии с ГОСТ 9012-59, срок действия которого продлен до настоящего времени.

При измерении твердости по Бринелю стальной закаленный шарик диаметром D вдавливается в испытуемый образец или изделие под действием нагрузки P в течение определенного времени. После удаления нагрузки измеряется диаметр d полученного при этом сферического отпечатка (рис. 2.а).

Рисунок 2. Схемы определения твердости:

а- по Бринелю;

Б - по Роквеллу;

в - по Виккерсу

В качестве индентора при работе на приборе Бринеля используют стальной закаленный шарик диаметром d = 1; 2; 2,5; 5 и 10 мм.

Для того, чтобы значения твердости при разных испытаниях были сопоставимы, величину нагрузки при данном диаметре шарика следует выбирать используя соотношение:

ЗначенияK могут быть равны 30; 15; 10; 5; 2,5; 1 в зависимости от твердости контролируемого материала. Так для черных металлов и их сплавов (железо, сталь) и других высокопрочных материалов K = 30; для алюминия, меди, никеля и их сплавов K = 10; для олова, свинца и сплавов на их основе K = 2,5.

При выборе условий испытания также важно учитывать толщину металла и продолжительность выдержки образца под нагрузкой, в соответствии со стандартами.

Перед началом испытаний выбранный индентор закрепляется в шпинделе твердомера, с помощью сменных грузов устанавливается выбранная нагрузка. Затем, образец подлежащий измерению, устанавливается на столик прибора и столик поднимается вверх, прижимая образец к шарику, пока не загорится сигнальная лампочка. Таким образом на образец подается предварительная нагрузка, которая на приборе Бринеля составляет 100 кгс (981 Н). Затем нажатием кнопки на корпусе прибора включается механизм, который автоматически осуществляет полное нагружение, выдержку образца под нагрузкой и ее снятие.

После этого нужно опустить столик, снять образец, измерить диаметр полученного отпечатка с помощью специального микроскопа (рис. 3) и определить твердость.

Рисунок 3 – Измерение диаметра отпечатка по шкале лупы

Твердость, определяемая на приборе Бринеля обозначается HB и определяется как отношение нагрузки, действующей на индентор, к площади поверхности сферического отпечатка F :

А так как площадь сферического отпечатка равна:

(4)

Следовательно значение твердости будет равно:

(5)

Если нагрузка выражена в ньютонах, то значение твердости умножается на коэффициент равный 0,102 .

Таким образом, диаметр отпечатка является критерием твердости по Бринелю.

Обычно вычисления твердости по вышеуказанной формуле не производят, а определяют твердость по таблице, которая приведена в ГОСТ 9012-59 или справочной литературе.

Зная число твердости по Бринелю, можно приближенно оценить временное сопротивление металла разрыву (предел прочности), используя количественное соотношение между этими характеристиками, установленное опытным путем. Например, для углеродистых сталей с твердостью HB от 120 до 175 используется соотношение:

s В = 3,4 HB (6)

Временное сопротивление определяется в МПа (Н/мм 2).

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО РОКВЕЛЛУ

В ряде случаев определение твердости на приборе Бринеля оказывается невозможным. Нельзя, например, испытывать закаленную сталь, так как, индентор прибора Бринеля также изготовлен из закаленной стали. Нельзя измерять твердость тонких поверхностноупрочненных слоев изделий, подвергнутых химико-термической обработке, и твердость различных поверхностных покрытий.

В этих случаях возможно применение других приборов - Роквелла, Виккерса, ПМТ.

Измерение твердости по Роквеллу проводится в соответствии с ГОСТ 9013-59. При этом индентором может служить алмазный конус с углом при вершине 120° или стальной закаленный шарик диаметром 1,588мм (1/16 дюйма). При проведении испытаний индентор вдавливается в образец под действием двух последовательно прилагаемых нагрузок: предварительной Р о и основной:

Р = Р о + Р 1 , (7)

Принципиальное отличие измерения твердости на приборе Роквелла от измерения на приборе Бринеля состоит в том, что твердость определяют не по площади отпечатка, полученного при вдавливании индентора, а по его глубине, которая и является критерием твердости при этом испытании.



Глубину вдавливания h определяют после снятия основной нагрузки и по ее значениям вычисляется величина твердости по Роквеллу HR. Естественно, чем больше глубина полученного отпечатка, тем меньше значение твердости.

Твердость по Роквеллу выражается в условных единицах. За единицу твердости принята безразмерная величина, соответствующая осевому перемещению индентора на 0,002 мм.

При испытаниях твердость можно измерять по трем шкалам: А , В , С .

При использовании в качестве индентора алмазного конуса твердость определяют по двум шкалам: А и С , при использовании шарика - по шкале В .

Число твердости по Роквеллу вычисляется по формулам:

При измерении по шкалам А и С:

HRC (HRA) = 100 – e (8)

При измерении по шкале В:

HRB = 130 – e (9)

где e = (h - ho) / 0,002 (10)

При выборе условий испытания целесообразно руководствоваться следующими данными (табл. 1):

Таблица 1

Результаты определения твердости фиксируются на индикаторе прибора, где имеются две шкалы - черная ми красная. Черная используется при измерениях с помощью алмазного конуса или конуса таких же размеров, изготовленного из твердого сплава (А и С ). Красная шкала для измерений с помощью шарика (В ).

Испытания проводятся в следующем порядке:

Устанавливается образец на столике прибора; образец приводится в соприкосновение с индентором с помощью механизма подъема и осуществляется предварительное нагружение. При этом индентор вдавливается в поверхность образца на глубину h о . Достижение предварительной нагрузки Р о = 10 кгс (98 Н) отмечается на шкале установкой маленькой стрелки на красной точке. Положение большой стрелки должно при этом совпадать с цифрой “0” черной шкалы. Если этого не произошло необходимо повернуть шкалу маховичком до точного совпадения этой стрелки с указанной отметкой.

Нажать на клавишу механизма нагружения, в результате чего на индентор подается основная нагрузка Р 1 , под действием которой он углубляется в образец. Выдержка под нагрузкой и снятие нагрузки происходит автоматически. В конечном положении большая стрелка указывает на значение твердости по соответствующей шкале.

Твердость по Роквеллу обозначается цифрами, характеризующими величину твердости, и буквами HR с указанием шкалы, например: 61,0 HRC; 42,0 HRB.

ОПРЕДЕЛЕНИЕ ТВЕРДОСТИ ПО ВИККЕРСУ И МИКРОТВЕРДОСТИ

В ряде случаев необходимо определить твердость тонких поверхностных слоев или распределение ее по сечению образца. Выполнить эти задачи на приборах Бринеля или Роквелла невозможно из-за больших размеров отпечатков. Для таких измерений используют приборы Виккерса или микротвердости (ПМТ).

В указанных приборах в качестве индентора используется четырехгранная алмазная пирамида с углами при вершине 136° (рис. 2.в). Число твердости по Виккерсу и микротвердость определяются как отношение действующей нагрузки Р к площади боковой поверхности полученного пирамидального отпечатка:

(11)

где d - среднее арифметическое длин обеих диагоналей отпечатка.

Для удобства и ускорения вычислений следует пользоваться таблицами, рассчитанными по приведенной формуле.

Испытательные нагрузки при измерениях на приборе Виккерса (ГОСТ 2999 - 75) выбираются в пределах от 5 до 120 кгс (от 49 до 1176 Н). При измерениях микротвердости нагрузки значительно ниже: от 0,005 до 0,5 кгс (от 0,05 до 5 Н). Благодаря этому в последнем случае значительно меньше и размеры полученных отпечатков, что делает возможным определение твердости отдельных структурных составляющих.

Измерение диагоналей полученных отпечатков проводится с помощью микроскопов.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

1. Перед проведением практической части работы необходимо ознакомиться с приборами, на которых предстоит проводить измерения, с техникой измерений и методикой определения результатов.

2. Провести измерение твердости углеродистой отожженной стали (40, 60), дюралюминия и меди на приборе Бринеля. Для этого:

a. Выбрать нагрузку, исходя из данных, приведенных в методических указаниях;

b. Получить отпечаток индентора на перечисленных материалах;

c. При помощи специального микроскопа определить диаметр полученного отпечатка с точностью до сотых долей миллиметра;

d. Используя формулу для определения твердости по Бринелю (5) определить значение твердости испытуемых материалов и занести данные в таблицу 2;

e. При помощи таблиц проконтролировать правильность определения значений твердости и табличные данные также занести в таблицу 2.

3. Провести измерение твердости инструментальной закаленной стали У8 и конструкционной низкоуглеродистой стали 30 на приборе Роквелла. Для этого:

a. В соответствии с таблицей выбрать шкалу, по которой будет проводиться измерение твердости;