Известно, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория Л. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цени (циклы) в молекулах.
Помимо атомов углерода и водорода молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
Гетероатомы (кислород, азот и др.) могут входить в состав молекул и ациклических соединений, образуя в них функциональные группы, например, гидроксильную - ОН, карбонильную, карбоксильную, аминогруппу -NН2.
Функциональная группа - группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.

Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атомами углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой р-электронов, образующих общую π-систему (единое π-электронное облако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в отличие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды называют алканами , они имеют общую формулу С n Н 2 n +2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины.

Содержащие одну двойную связь , получили название алкены . Они имеют общую формулу С n Н 2 n .

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиенами

Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула С n Н 2 n — 2 .

Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2 n .

Особая группа углеводородов, ароматических , или аренов (с замкнутой общей π-электронной системой), известна из примера углеводородов с общей формулой С n Н 2 n -6.

Таким образом, если в их молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов : галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

Общая формула моногалогенопроизводных предельных углеводородов:

а состав выражается формулой

C n H 2 n +1 Г,

где R - остаток от предельного углеводорода (алкана), углеводородный радикал (это обозначение используется и далее при рассмотрении других классов органических веществ), Г - атом галогена (F, Сl, Вг, I).

Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Спирты называют одноатомными , если они имеют одну гидроксильную группу, и предельными, если они являются производными алканов.

Общая формула предельных одноатомных спиртов:

а их состав выражается общей формулой:
С n Н 2 n +1 ОН или С n Н 2 n +2 О

Известны примеры многоатомных спиртов, т. е. имеющих несколько гндроксильных групп.

Фенолы - производные ароматических углеводородов (ряда бензола), в которых один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.

Простейший представитель с формулой С 6 Н 5 ОН называется фенолом.

Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.

Состав предельных альдегидов и кетонов выражается формулой С n Н 2л О.

Карбоновые кислоты - производные углеводородов, содержащие карбоксильные группы (-СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных одноосновных кислот (R-СООН). Их состав выражается формулой С n Н 2 n O 2 .

Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-О-R или R 1 -O-R 2 .

Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2 n +2 O

Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.

Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .

Общая формула предельных мононитросоединений:

а состав выражается общей формулой

С n Н 2 n +1 NO 2 .

Амины - соединения, которые рассматривают как производные аммиака (NН 3), в котором атомы водорода замещены на углеводородные радикалы.

В зависимости от природы радикала амины могут быть алифатическими и ароматическими .

В зависимости от числа замещенных на радикалы атомов водорода различают:

Первичные амины с общей формулой: R-NН 2

Вторичные - с общей формулой: R 1 -NН-R 2

Третичные - с общей формулой:

В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу -NН 2 . Состав предельных первичных аминов выражается формулой С n Н 2 n +3 N.

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом: аминогруппу -NН 2 , и карбоксил -СООН.

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой С n Н 2 n +1 NO 2 .

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др.

Для названия органических соединений используют 2 номенклатуры — рациональную и систематическую (ИЮПАК) и тривиальные названия.

Составление названий по номенклатуре ИЮПАК

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);
-ен (при наличии двойной связи);
-ин (при наличии тройной связи).

Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:
СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3
бутен-1 бутен-2

СН 2 =СН–СН=СН 2
бутадиен-1,3

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.

Номенклатура некоторых органических веществ (тривиальная и международная)


С развитием химической науки и появлением большого числа новых химических соединений все более возрастала необходимость в разработке и принятии понятной ученым всего мира системы их наименования, т.е. . Далее приведем обзор oсновных номенклатур органических соединений.

Тривиальная номенклатура

В истоках развития oрганической химии новым сoединениям приписывали тривиальные названия, т.е. названия сложившиеся исторически и нередко связанные со способом их получения, внешним видом и даже вкусом и т.п. Такая номенклатура органических соединений называется тривиальной. В таблице ниже приведены некоторые из соединений, сохранивших свои названия и в нынешние дни.

Рациональная номенклатура

С расширением списка органических соединений, возникла необходимость связывать их название со Базой рациональной номенклатуры органических соединений является наименование простейшего органического соединения. Например:

Однако, более сложным органическим соединениям невозможно приписать названия подобным способом. В этом случае следует называть соединения согласно правилам систематической номенклатуры ИЮПАК.

Систематическая номенклатура ИЮПАК

ИЮПАК (IUPAC) - Международный союз теоретической и прикладной химии (International Union of Pure and Applied Chemistry).

В данном случае, называя соединения, следует учитывать местоположение атомов углерода в молекуле и структурных элементов. Наиболее часто применяемой является заместительная номенклатура органических соединений, т.е. выделяется базовая основа молекулы, в которой атомы водорода замещены на какие-либо структурные звенья или атомы.

Прежде чем приступить к построению названий соединений, советуем выучить наименования числовых приставок, корней и суффиксов используемых в номенклатуре ИЮПАК .

А также названия функциональных групп:

Для обозначения числа кратных связей и функциональных групп пользуются числительными:

Предельные углеводородные радикалы:

Непредельные углеводородные радикалы:

Ароматические углеводородные радикалы:

Правила построения названия органического соединения по номенклатуре ИЮПАК:

  1. Выбрать главную цепь молекулы

Определить все присутствующие функциональные группы и их старшинство

Определить наличие кратных связей

  1. Пронумеровать главную цепь, причем нумерацию следует начинать с наиболее близкому к старшей группе конца цепи. При существовании нескольких таких возможностей, нумеруют цепь так, чтобы минимальный номер получили или кратная связь, или другой заместитель, присутствующий в молекуле.

Карбоциклические соединения нумеруют начиная со связанного со старшей характеристической группой атома углерода. При наличии двух и более заместителей цепь стараются пронумеровать так, чтобы заместителям принадлежали минимальные номера.

  1. Составить название соединения:

— Определить основу названия соединения, составляющего корень слова, который обозначает предельный углеводород с тем же количеством атомов, что и главная цепь.

— После основы названия следует суффикс, показывающий степень насыщенности и количество кратных связей. Например, — тетраен, — диен . При отсутствии кратных связей используют суффикс – ск.

— Затем, также в суффикс добавляется наименование самой старшей функциональной группы .

— После следует перечисление заместителей в алфавитном порядке с указанием их местоположения арабской цифрой. Например, — 5-изобутил, — 3-фтор. При наличии нескольких одинаковых заместителей указывают их количество и положение, например, 2,5 – дибром-, 1,4,8-тримети-.

Следует учесть, что цифры отделяются от слов дефисом, а между собой – запятыми.

В качестве примера дадим название следующему соединению:

1. Выбираем главную цепь , в состав которой обязательно входит старшая группа – СООН.

Определяем другие функциональные группы : — ОН, — Сl, — SH, — NH 2 .

Кратных связей нет.

2. Нумеруем главную цепь , начиная со старшей группы.

3. Число атомов в главной цепи – 12. Основа названия

10-амино-6-гидрокси -7-хлоро-9-сульфанил-метиловыйэфир додекановой кислоты.

10-амино-6-гидрокси-7-хлоро-9-сульфанил-метилдодеканоат

Номенклатура оптических изомеров

  1. В некоторых классах соединений, таких как альдегиды, окси- и аминокислоты для обозначения взаимного расположения заместителей используют D , L – номенклатуру. Буквой D обозначают конфигурацию правовращающего изомера, L – левовращающего.

В основе D,L -номенклатуры органических соединений лежат проекции Фишера:

  • α-аминокислот и α- оксикислот вычленяют «оксикислотный ключ», т.е. верхние части их проекционных формул. Если гидроксильная (амино-) группа расположена справа, то это D -изомер, слева L -изомер.

Например, представленная ниже винная кислота имеет D — конфигурацию по оксикислотному ключу:

  • чтобы определить конфигурации изомеров сахаров вычленяют «глицериновый ключ», т.е. сравнивают нижние части (нижний асимметрический атом углерода) проекционной формулы сахара с нижней частью проекционной формулы глицеринового альдегида.

Обозначение конфигурации сахара и направление вращения аналогично конфигурации глицеринового альдегида, т.е. D – конфигурации соответствует расположение гидроксильной группы расположена справа, L – конфигурации – слева.

Так, например, ниже представлена D-глюкоза.

2) R -, S-номенклатура (номенклатура Кана, Ингольда и Прелога)

В данном случае заместители при асимметрическом атоме углерода располагаются по старшинству. Оптических изомеры имеют обозначения R и S , а рацемат — RS .

Для описания конфигурации соединения в соответствии с R,S-номенклатурой поступают следующим образом:

  1. Определяют все заместители у асимметричного атома углерода.
  2. Определяют старшинство заместителей, т.е. сравнивают их атомные массы. Правила определения ряда старшинства те же, что и при использовании E/Z-номенклатуры геометрических изомеров.
  3. Ориентируют в пространстве заместители так, чтобы младший заместитель (обычно водород) находился в наиболее отдаленном от наблюдателя углу.
  4. Определяют конфигурацию по расположению остальных заместителей. Если движение от старшего к среднему и далее к младшему заместителю (т.е. в порядке уменьшения старшинства) осуществляется по часовой стрелке, то это R конфигурация, против часовой стрелки — S-конфигурация.

В таблице ниже приведен перечень заместителей, расположенных в порядке возрастания их старшинства:

Категории ,

Цель лекции: знакомство с классификацией и номенклатурой органических соединений

План:

1. Предмет и задачи органической химии. Значение её для фармации.

2. Классификация органических соединений.

3. Принципы тривиальной и рациональной номенклатуры.

4. Принципы номенклатуры ИЮПАК.

Предмет и задачи органической химии.

Органическая химия - это раздел химии, посвященный изучению строения, способов синтеза и химических превращений углеводородов и их функциональных производных.

Термин «органическая химия » впервые ввел шведский химик Йенс Якоб Берцеллиус в 1807 г.

Благодаря особенностям своего строения органические вещества очень многочисленны. Сегодня их число достигает 10 млн.

В настоящее время состояние органической химии таково, что позволяет научно спланировать и осуществить синтез любых сложных молекул (белков, витаминов, ферментов, лекарственных препаратов и т. д.).

Органическая химия тесно связана с фармацией. Она позволяет осуществлять выделение индивидуальных лекарственных веществ из растительного и животного сырья, синтезирует и проводит очистку лекарственного сырья, определяет структуру вещества и механизм химического действия, позволяет определять подлинность того или иного лекарственного препарата. Достаточно сказать, что 95 % лекарственных средств имеют органическую природу.

Классификация органических соединений

В классификации принимаются за основу два важнейших признака: строение углеродного скелета и наличие в молекуле функциональных групп.

По строению углеродного скелета органические. соединения делятся на три большие группы.

I Ациклические (алифатические) соединения, имеющие открытую углеродную цепь как неразветвлённую, так и разветвлённую.

Родоначальными соединениями в органической химии признаны углеводороды , состоящие только из атомов углерода и водорода. Разнообразные органические соединения можно рассматривать как производные углеводородов, полученные введением в них функциональных групп.


Функциональной группой называют структурный фрагмент молекулы, характерный для данного класса органических соединений и определяющий его химические свойства.

Например, свойства спиртов определяются наличием гидроксогруппы (- ОН ), свойства аминов - аминогруппы (- NH 2 ), карбоновых кислот наличием в молекуле карбоксильной группы (- СООН ) и так далее.

Таблица 1 . Основные классы органических соединений

Такая классификация важна потому, что функциональные группы во многом определяют химические свойства данного класса соединений.

Если соединения содержат несколько функциональных групп и они одинаковые, то такие соединения называют полифункциональными (СН 2 ОН - СНОН - СН 2 ОН - глицерин), если молекула содержит разные функциональные группы, то это гетерофункциональное соединение (СН 3 - СН(ОН) - СООН - молочная кислота). Гетерофункциональные соединения можно сразу отнести к нескольким классам соединений.

>> Химия: Классификация органических соединений

Вы уже знаете, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория А. М. Бутлерова . Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цепи (циклы) в молекулах.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки Классификация органических веществ еще более сложна. Это обусловлено целым рядом причин: чрезвычайной многочисленностью органических соединений, сложностью и разнообразием их строения, самой историей изучения соединений углерода.
Действительно, до середины XIX в. органическая химия, по образному выражению Ф.Велера*, представлялась «дремучим лесом, полным удивительных вещей, безграничной чащей, из которой нельзя выбраться, куда не осмеливаешься проникнуть». Только с появлением в 1861 г. теории химического строения органических соединений «дремучий лес»
органической химии стал преобразовываться в залитый солнечным светом регулярный парк со строгой сеткой аллей и дорожек. Авторами этой теории явилось выдающееся интернациональное трио ученых-химиков: наш соотечественник А.М.Бутлеров**, немец Ф.А.Кекуле и англичанин А.Купер.

Рис. 5. Фридрих Велер
(1800–1882)


Рис. 6. Александр
Михайлович Бутлеров
(1828–1886)

Сущность созданной ими теории химического строения можно сформулировать в виде трех положений.
1. Атомы в молекулах соединены в определенном порядке согласно их валентности, причем углерод в органических соединениях четырехвалентен.
2. Свойства веществ определяются не только качественным и количественным элементным составом, но и порядком связи атомов в молекулах, т.е. химическим строением.
3. Атомы в молекулах оказывают друг на друга взаимное влияние, что отражается на свойствах веществ.
* Немецкий химик. Проводил исследования в области неорганической и органической химии. Установил существование явления изомерии, впервые осуществил синтез органического вещества (мочевины) из неорганического. Получил некоторые металлы (алюминий, бериллий и др.).
** Выдающийся русский химик, автор теории химического
строения органических веществ. На основании по
нятия о строении объяснил явление изомерии, предсказал существование изомеров ряда веществ и впервые их синтезировал. Первым осуществил синтез сахаристого вещества. Создатель школы русских хим иков, в которую входили В.В.Марковников, А.М.Зайцев, Е.Е.Вагнер, А.Е.Фаворский и др.

Сегодня кажется невероятным, что до середины XIX в., в период великих открытий в естествознании, ученые плохо представляли себе внутреннее устройство вещества. Именно Бутлеров ввел термин «химическое строение», подразумевая под ним систему химических связей между атомами в молекуле, их взаимное расположение в пространстве. Благодаря такому пониманию строения молекулы оказалось возможным объяснить явление изомерии, предсказать существование неизвестных изомеров, соотнести свойства веществ с их химическим строением. В качестве иллюстрации явления изомерии приведем формулы и свойства двух веществ – этилового спирта и диметилового эфира, имеющих одинаковый элементный состав С2Н6О, но различное химическое строение (табл. 2).
Таблица 2


Иллюстрация зависимости свойств вещества от его строения


Явление изомерии, очень широко распространенное в органической химии, является одной из причин многообразия органических веществ. Другая причина многообразия органических веществ заключается в уникальной способности атома углерода образовывать друг с другом химические связи, в результате чего получаются углеродные цепи
различной длины и строения: неразветвленные, разветвленные, замкнутые. Например, четыре атома углерода могут образовать такие цепи:


Если учесть, что между двумя атомами углерода могут существовать не только простые (одинарные) связи С–С, но также двойные С=С и тройные С≡С, то число вариантов углеродных цепей и, следовательно, различных органических веществ значительно увеличивается.
На теории химического строения Бутлерова основана и классификация органических веществ. В зависимости от того, атомы каких химических элементов входят в состав молекулы, все органичебольших групп: углеводороды, кислородсодержащие, азотсодержащие соединения.
Углеводородами называются органические соединения, состоящие только из атомов углерода и водорода.
По строению углеродной цепи, наличию или отсутствию в ней кратных связей все углеводороды делятся на несколько классов. Эти классы представлены на схеме 2.
Если углеводород не содержит кратных связей и цепь углеродных атомов не замкнута, он относится, как вы знаете, к классу предельных углеводородов, или алканов. Корень этого слова имеет арабское происхождение, а суффикс -ан присутствует в названиях всех углеводородов этого класса.
Схема 2


Классификация углеводородов


Наличие в молекуле углеводорода одной двойной связи позволяет отнести его к классу алкенов, причем его отношение к этой группе веществ подчеркивается
суффиксом -ен в названии. Простейшим алкеном является этилен, имеющий формулу CН2=СН2. Двойных связей С=С в молекуле может быть две, в этом случае вещество относится к классу алкадиенов.
Попытайтесь сами пояснить значение суффиксов -диен. Например, бутадиен-1,3 имеет структурную формулу: CН2=СН–CН=СН2.
Углеводороды с тройной углерод-углеродной связью в молекуле называют алкинами. На принадлежность к этому классу веществ указывает суффикс -ин. Родоначальником класса алкинов выступает ацетилен (этин), молекулярная формула которого С2Н2, а структурная – НС≡СН. Из соединений с замкнутой цепочкой углеродных
атомов важнейшими являются арены – особый класс углеводородов, название первого представителя которых вы наверняка слышали – это бензол С6Н6, структурная формула которого также известна каждому культурному человеку:


Как вы уже поняли, помимо углерода и водорода, в состав органических веществ могут входить атомы других элементов, в первую очередь кислорода и азота. Чаще всего атомы этих элементов в различных сочетаниях образуют группы, которые называют функциональными.
Функциональной группой называют группу атомов, определяющую наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.
Основные классы органических соединений, содержащих функциональные группы, представлены на схеме 3.
Схема 3
Основные классы органических веществ, содержащих функциональные группы


Функциональная группа –ОН называется гидроксильной и определяет принадлежность к одному из важнейших классов органических веществ – спиртам.
Названия спиртов образуются с помощью суффикса -ол. Например, наиболее известный представитель спиртов – это этиловый спирт, или этанол, С2Н5ОН.
Атом кислорода может быть связан с атомом углерода двойной химической связью. Группа >C=O называется карбонильной. Карбонильная группа входит в состав нескольких
функциональных групп, в том числе альдегидной и карбоксильной. Органические вещества, содержащие эти функциональные группы, называются, соответственно, альдегидами и карбоновыми кислотами. Наиболее известные представители альдегидов – это формальдегид НСОН и уксусный альдегид СН3СОН. С уксусной кислотой СН3СООН, раствор которой называется столовым уксусом, наверняка знаком каждый. Отличительным структурным признаком азотсодержащих органических соединений, и, в первую очередь, аминов и аминокислот является присутствие в их молекулах аминогруппы –NH2.
Приведенная классификация органических веществ также весьма относительна. Подобно тому, как в одной молекуле (например, алкадиенов) может содержаться две кратные связи, вещество может быть обладателем двух и даже более функциональных групп. Так, структурными единицами главных носителей жизни на земле – белковых молекул – являются аминокислоты. В молекулах этих веществ обязательно присутствуют как минимум две функциональные группы – карбоксильная иаминогруппа. Простейшая аминокислота называется глицин и имеет формулу:


Подобно амфотерным гидроксидам, аминокислоты сочетают в себе свойства кислот (за счет карбоксильной группы) и оснований (благодаря наличию в молекуле аминогруппы).
Для организации жизни на Земле амфотерные свойства аминокислот имеют особое значение – за счет взаимодействия аминогрупп и карбоксильных групп аминокис-
лоты соединяются в полимерные цепочки белков.
? 1. Назовите основные положения теории химического строения А.М.Бутлерова. Какую роль эта теория сыграла в развитии органической химии?
2. Какие классы углеводородов вам известны? По какому признаку проведена эта классификация?
3. Что называется функциональной группой органического соединения? Какие функциональные группы вы можете назвать? Какие классы органических соединений содержат названные функциональные группы? Запишите общие формулы классов соединений и формулы их представителей.
4. Дайте определение изомерии, запишите формулы возможных изомеров для соединений состава С4H10O. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
5. Отнесите вещества, формулы которых: С6Н6, С2Н6, С2Н4, НСООН, СН3ОН, С6Н12О6, к соответствующим классам органических соединений. С помощью различных источников информации дайте названия каждому из них и приготовьте сообщение об одном из соединений.
6. Структурная формула глюкозы:К какому классу органических соединений вы отнесете это вещество? Почему его называют соединением с двойственной функцией?
7. Сравните органические и неорганические амфотерные соединения.
8. Почему аминокислоты относят к соединениям с двойственной функцией? Какую роль в организации жизни на Земле играет эта особенность строения аминокислот?
9. Приготовьте сообщение на тему «Аминокислоты – "кирпичики” жизни», используя возможности Интернета.
10. Приведите примеры относительности деления органических соединений на определенные классы. Проведите параллели подобной относительности для неорганических соединений.