Многогранником называется тело, ограниченное плоскими многоугольниками. Элементами многогранника являются вершины , ребра и грани . Многогранник называется выпуклым , если весь он лежит по одну сторону от плоскости любой его грани. Правильным называется многогранник, грани которого являются правильным многоугольником. Всего существует пять правильных выпуклых многогранников, которые первым исследовал и описал Платон, живший в V – IV веках до н.э. Поэтому эти многогранники называют также «Платоновы тела ».

1. Тетраэдр (четырехгранник – правильная треугольная пирамида) – 4 вершины, 4 грани – треугольники.

2. Гексаэдр (шестигранник – куб) – 8 вершин, 6 граней – квадратов.

3. Октаэдр (восьмигранник) – 6 вершин, 8 граней – треугольников.

4. Икосаэдр (двадцатигранник) – 12 вершин, 20 граней – треугольников.

5. Додекаэдр (двенадцатигранник) – 20 вершин, 12 граней – пятиугольников.

Формула Эйлера для правильного многогранника:

В + Г – Р =2

где В – число вершин многогранника,

Г – число граней многогранника,

Р – число ребер многогранника.

Из всего многообразия выпуклых многогранников наибольший практический интерес представляют:

1) призмы – многогранники, у которых боковые ребра параллельны друг другу, а боковыми гранями являются параллелограммы;

2) пирамиды – многогранники, у которых боковые ребра пересекаются в одной точке – вершине;

3) призматоиды – многогранники, ограниченные какими-либо двумя многоугольниками, расположенными в параллельных плоскостях и называемыми основаниями, и треугольниками или трапециями, вершинами которых служат вершины оснований (рис.8.1).

Теоретическая часть

Определение и классификация многогранников

Теория многогранников, в частности выпуклых многогранников, - одна из самых увлекательных глав геометрии.

Л.А. Люстерник

Многогранники представляют собой простейшие тела в пространстве, подобно тому, как многоугольники - простейшие фигуры на плоскости. С чисто геометрической точки зрения многогранник - это часть пространства, ограниченная плоскими многоугольниками - гранями. Стороны и вершины граней называют рёбрами и вершинами самого многогранника. Грани образуют так называемую многогранную поверхность. На многогранную поверхность обычно накладывают такие ограничения:

1) каждое ребро должно являться общей стороной двух и только двух граней, называемых смежными;

2) каждые две грани можно соединить цепочкой последовательно смежных граней;

3) для каждой вершины углы прилежащих к этой вершине граней должны ограничивать некоторый многогранный угол.

Геометрические тела

Многогранники

Не многогранники

Фигура на рисунке 1 является многогранником. Совокупность из 18 квадратов на рисунке 2 многогранником не является, потому что не выполняются ограничения, накладываемые на многогранные поверхности.

Многогранник называется выпуклым, если он лежит по одну сторону от плоскости любой из его граней.

Многогранник называется правильными, если:

Он выпуклый;

Все его грани являются равными правильными многоугольниками;

В каждой его вершине сходится одинаковое число граней;

Все его двухгранные углы равны.

Виды правильных многогранников

«Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук»

Л. Кэррол

Первые упоминания о правильных многогранниках

Школе Пифагора приписывают открытие существования 5 типов правильных выпуклых многогранников. Позже в своем трактате «Тимей» другой древнегреческий ученый Платон изложил учение пифагорейцев о правильных многогранниках. С тех пор правильные многогранники стали называться Платоновыми телами. Правильным многогранником посвящена последняя, XIII книга знаменитого труда Евклида «Начала». Существует версия, что Евклид написал первые 12 книг для того, чтобы читатель понял написанную в XIII книге теорию правильных многогранников, которую историки математики называют «венцом «Начал». Здесь установлено существование всех пяти типов правильных многогранников и доказано, что других правильных многогранников не существует.

Почему их только 5

А все-таки, почему же правильных многогранников только пять? Ведь правильных многоугольников на плоскости - бесконечное число.

а) Пусть грани правильного многогранника - правильные треугольники, каждый плоский угол при этом равен 60 о. Если при вершине многогранного угла n плоских углов, то 60 о n < 360 o , n < 6,

n = 3, 4, 5, т.е. существует 3 вида правильных многогранников с треугольными гранями. Это тетраэдр, октаэдр, икосаэдр.

б) Пусть грани правильного многогранника - квадраты, каждый плоский угол составляет 90 о. Для n - гранных углов 90 о n<360 о, n < 4,

n = 3, т.е. квадратные грани может иметь лишь правильный многогранник с трехгранными углами - куб.

в) Пусть грани - правильные пятиугольники, каждый плоский угол равен 180 о (5 - 2) : 5 = 108 о, 108 о n<360 о, n< n = 3, додекаэдр.

г) У правильного шестиугольника внутренние углы:

L = 180 о (6 - 2) : 6 = 120 о

В этом случае невозможен даже трехгранный угол. Значит, правильных многогранников с шестиугольными и более гранями не существует.

Почему правильные многогранники получили такие названия

Это связано с числом их граней. В переводе с греческого языка:

эдрон - грань, окто - восемь, значит, октаэдр - восьмигранник

тетра - четыре, поэтому тетраэдр - пирамида, состоящая из четырех равносторонних треугольников,

додека - двенадцать, додекаэдр состоит из двенадцати граней,

гекса - шесть, куб - гексаэдр, так как у него шесть граней,

икоси - двадцать, икосаэдр - двадцатигранник.

Совершенство форм, красивые математические закономерности, присущие правильным многогранникам, явились причиной того, что им приписывались различные магические свойства. Они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Цель урока:

  1. Ввести понятие правильных многогранников.
  2. Рассмотреть виды правильных многогранников.
  3. Решение задач.
  4. Привить интерес к предмету, научить видеть прекрасное в геометрических телах, развитие пространственного воображения.
  5. Межпредметные связи.

Наглядность: таблицы, модели.

Ход урока

I. Организационный момент. Сообщить тему урока, сформулировать цели урока.

II. Изучение нового материала/

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести “Правильные многогранники”. Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. “Правильных многогранников вызывающе мало, – написал когда-то Л. Кэролл, – но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук”.

Определение правильного многогранника.

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани – равные друг другу правильные многоугольники;
  3. в каждой его вершине сходится одинаковое число ребер;
  4. все его двугранные углы равны.

Теорема: Существует пять различных (с точностью до подобия) типов правильных многогранников: правильный тетраэдр, правильный гексаэдр (куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

Таблица 1. Некоторые свойства правильных многогранников приведены в следующей таблице.

Вид грани Плоский угол при вершине Вид многогранного угла при вершине Сумма плоских углов при вершине В Р Г Название многогранника
Правильный треугольник 60º 3-гранный 180º 4 6 4 Правильный тетраэдр
Правильный треугольник 60º 4-гранный 240º 6 12 8 Правильный октаэдр
Правильный треугольник 60º 5-гранный 300º 12 30 20 Правильный икосаэдр
Квадрат 90º 3-гранный 270º 8 12 6 Правильный гексаэдр (куб)
Правильный треугольник 108º 3-гранный 324º 20 30 12 Правильный додекаэдр

Рассмотрим виды многогранников:

Правильный тетраэдр

<Рис. 1>

Правильный октаэдр


<Рис. 2>

Правильный икосаэдр


<Рис. 3>

Правильный гексаэдр (куб)


<Рис. 4>

Правильный додекаэдр


<Рис. 5>

Таблица 2. Формулы для нахождения объемов правильных многогранников.

Вид многогранника Объем многогранника
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Правильный гексаэдр (куб)
Правильный додекаэдр

“Платоновые тела”.

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен – ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют так же платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание. Его по латыни стали называть quinta essentia (“пятая сущность”).

Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб – монокристалл поваренной соли (NaCl), октаэдр – монокристалл алюмокалиевых квасцов ((KAlSO 4) 2 ·l2H 2 O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры 12 граней додекаэдра.

Где еще можно увидеть эти удивительные тела?

В очень красивой книге немецкого биолога начала нашего века Э. Геккеля “Красота форм в природе” можно прочитать такие строки: “Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы”. Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видны одноклеточные организмы – феодарии, форма которых точно передает икосаэдр. Чем же вызвана эта природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет по теми же углами, что и поток атомов на вирус. Оказалось, что свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники – самые выгодные фигуры. И природа этим широко пользуется. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Следующая задача проиллюстрирует эту мысль.

Задача. Модель молекулы метана CH 4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре – атом углерода. Определить угол связи между двумя CH связями.


<Рис. 6>

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра. Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости.

Треугольник АОС – равнобедренный. Отсюда а – сторона куба, d – длина диагонали боковой грани или ребро тетраэдра. Итак, а = 54, 73561 0 и j = 109,47 0

Задача. В кубе из одной вершины (D) проведены диагонали граней DA, DB и DC и концы их соединены прямыми. Доказать, что многогранник DABC, образованный четырьмя плоскостями, проходящими через эти прямые, – правильный тетраэдр.


<Рис. 7>

Задача. Ребро куба равно a. Вычислить поверхность вписанного в него правильного октаэдра. Найти ее отношение к поверхности вписанного в тот же куб правильного тетраэдра.


<Рис. 8>

Обобщение понятия многогранника.

Многогранник – совокупность конечного числа плоских многоугольников такая, что:

  1. каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного (называемого смежным с первым) по этой стороне);
  2. от любого из многоугольников составляющих многогранник, можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, к смежному с ним и т.д.

Эти многоугольники называются гранями, их стороны – ребрами, а их вершины – вершинами многогранника.

Приведенное определение многогранника получает различный смысл в зависимости от того, как определить многоугольник:

– если под многоугольником понимают плоские замкнуты ломаные (хотя бы и само пересекающиеся), то приходят к данному определению многогранника;

– если под многоугольником понимать часть плоскости, ограниченной ломанными, то с этой точки зрения под многогранником понимают поверхность, составленную из многоугольных кусков. Если эта поверхность сама себя не пересекает, то она есть полная поверхность некоторого геометрического тела, которое так же называют многогранником. От сюда возникает третья точка зрения на многогранники как на геометрические тела, при чем допускается также существование у этих тел “дырок”, ограниченных конечным числом плоских граней.

Простейшими примерами многогранников являются призмы и пирамиды.

Многогранник называется n- угольной пирамидой, если он имеет одной своей гранью (основанием) какой-либо n- угольник, а остальные грани – треугольники с общей вершиной, не лежащей в плоскости основания. Треугольная пирамида называется также тетраэдром.

Многогранник называется n -угольной призмой, если он имеет двумя своими гранями (основаниями) равные n -угольники (не лежащие в одной плоскости), получающиеся друг из друга параллельным переносом, а остальные грани – параллелограммы, противоположными сторонами которых являются соответственные стороны оснований.

Для всякого многогранника нулевого рода эйлерова характеристика (число вершин минус число ребер плюс число граней) равна двум; символически: В – Р + Г = 2 (теорема Эйлера). Для многогранника рода p справедливо соотношение В – Р + Г = 2 – 2p .

Выпуклым многогранником называется такой многогранник, который лежит по одну сторону от плоскости любой его грани. Наиболее важны следующие выпуклые многогранники:


<Рис. 9>

  1. правильные многогранники (тела Платона) – такие выпуклые многогранники, все грани которых одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные <Рис. 9, № 1-5>;
  2. изогоны и изоэдры – выпуклые многогранники, все многогранные углы которых равны (изогоны) или равные все грани (изоэдры); причем группа поворотов (с отражениями) изогона (изоэдра) вокруг центра тяжести переводит любую его вершину (грань) в любую другую его вершину (грань). Полученные так многогранники называются полуправильными многогранниками (телами Архимеда) <Рис. 9, № 10-25>;
  3. параллелоэдры (выпуклые) – многогранники, рассматриваемые как тела, параллельным пересечением которых можно заполнить все бесконечное пространство так, чтобы они не входили друг в друга и не оставляли пустот между собой, т.е. образовывали разбиение пространства <Рис. 9, № 26-30>;
  4. Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) правильных многогранников (тела Пуансо). В этих многогранниках либо грани пересекают друг друга, либо грани – самопересекающиеся многоугольники <Рис. 9, № 6-9>.

III. Задание на дом.

IV. Решение задач № 279, № 281.

V. Подведение итогов.

Список использованной литературы:

  1. “Математическая энциклопедия”, под редакцией И. М. Виноградова, издательство “Советская энциклопедия”, Москва, 1985 г. Том 4 стр. 552–553 Том 3, стр. 708–711.
  2. “Малая математическая энциклопедия”, Э. Фрид, И. Пастор, И. Рейман и др. издательство Академии наук Венгрии, Будапешт, 1976 г. Стр. 264–267.
  3. “Сборник задач по математики для поступающих в ВУЗы” в двух книгах, под редакцией М.И. Сканави, книга 2 – Геометрия, изд-во “Высшая школа”, Москва, 1998 г. Стр. 45–50.
  4. “Практические занятия по математике: Учебное пособие для техникумов”, издательство “Высшая школа”, Москва, 1979 г. Стр. 388–395, стр. 405.
  5. “Повторяем математику” издание 2–6, доп., Учебное пособие для поступающих в ВУЗы, издательство “Высшая школа”, Москва, 1974 г. Стр. 446–447.
  6. Энциклопедический словарь юного математика, А. П. Савин, издательство “Педагогика”, Москва, 1989 г. Стр. 197–199.
  7. “Энциклопедия для детей. Т.П. Математика”, главный редактор М. Д. Аксенова ; метод, и отв. редактор В. А. Володин, издательство “Аванта+”, Москва, 2003 г. Стр. 338–340.
  8. Геометрия, 10–11: Учебник для общеобразовательных учреждений/ Л.С. Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. – 10-е издание – М.: Просвещение, 2001. Стр. 68–71.
  9. “Квант” № 9, 11 – 1983, № 12 – 1987, № 11, 12 – 1988, № 6, 7, 8 – 1989. Научно-популярный физико-математический журнал Академии наук СССР и Академии педагогических наук СССР. Издательство “Наука”. Главная редакция физико-математической литературы. Стр. 5–9, 6–12, 7–9, 10, 4–8, 13, 16, 58.
  10. Решение задач повышенной сложности по геометрии: 11-й класс – М.: АРКТИ, 2002. Стр. 9, 19–20.

Часть геометрии, которую мы изучали до сих пор, называется планиметрией - эта часть была о свойствах плоских геометрических фигур, то есть фигур, целиком расположенных в некоторой плоскости. Но окружающие нас предметы в большинстве не являются плоскими. Любой реальный предмет занимает какую-то часть пространства.

Раздел геометрии, в котором изучаются свойства фигур в пространстве, называется стереометрией .

Если поверхности геометрических тел составлены из многоугольников, то такие тела называются многогранниками .

Многоугольники, из которых составлен многогранник, называются его гранями . При этом предполагается, что никакие две соседние грани многогранника не лежат в одной плоскости.

Стороны граней называются рёбрами , а концы рёбер - вершинами многогранника.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

Многогранники бывают выпуклыми и невыпуклыми .

Выпуклый многогранник характеризуется тем, что он расположен по одну сторону от плоскости каждой своей грани. На рисунке выпуклый многогранник - октаэдр. У октаэдра восемь граней, все грани - правильные треугольники.

На рисунке - невыпуклый (вогнутый) многоугольник. Если рассмотреть, например, плоскость треугольника \(EDC\), то, очевидно, часть многоугольника находится по одну сторону, а часть - по другую сторону этой плоскости.

Для дальнейших определений введём понятие параллельных плоскостей и параллельных прямых в пространстве и перпендикулярности прямой и плоскости.

Две плоскости называются параллельными , если они не имеют общих точек.

Две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются.

Прямую называют перпендикулярной к плоскости , если она перпендикулярна к любой прямой в этой плоскости.

Призма

Теперь можем ввести определение призмы.

\(n\)-угольной призмой называют многогранник, составленный из двух равных \(n\)-угольников, лежащих в параллельных плоскостях, и \(n\)-параллелограммов, которые образовались при соединении вершин \(n\)-угольников отрезками параллельных прямых.

Равные \(n\)-угольники называют основаниями призмы.

Стороны многоугольников называют рёбрами оснований .

Параллелограммы называют боковыми гранями призмы.

Параллельные отрезки называют боковыми рёбрами призмы.

Призмы бывают прямыми и наклонными .

Если основания прямой призмы - правильные многоугольники, то такую призму называют правильной .

У прямых призм все боковые грани - прямоугольники. Боковые рёбра прямой призмы перпендикулярны к плоскостям её оснований.

Если из любой точки одного основания провести перпендикуляр к другому основанию призмы, то этот перпендикуляр называют высотой призмы.

На рисунке - наклонная четырёхугольная призма, в которой проведена высота B 1 E .

В прямой призме каждое из боковых рёбер является высотой призмы.

На рисунке - прямая треугольная призма. Все боковые грани - прямоугольники, любое боковое ребро можно называть высотой призмы. У треугольной призмы нет диагоналей, так как все вершины соединены рёбрами.

На рисунке - правильная четырёхугольная призма. Основания призмы - квадраты. Все диагонали правильной четырёхугольной призмы равны, пересекаются в одной точке и делятся в этой точке пополам.

Четырёхугольная призма, основания которой - параллелограммы, называется параллелепипедом .

Вышеупомянутую правильную четырёхугольную призму можно также называть прямым параллелепипедом .

Если основания прямого параллелепипеда - прямоугольники, то этот параллелепипед - прямоугольный .

На рисунке - прямоугольный параллелепипед. Длины трёх рёбер с общей вершиной называют измерениями прямоугольного параллелепипеда.

Например, AB , AD и A A 1 можно называть измерениями.

Так как треугольники ABC и AC C 1 - прямоугольные, то, следовательно, квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов его измерений:

A C 1 2 = AB 2 + AD 2 + A A 1 2 .

Если через соответственные диагонали оснований провести сечение, получится то, что называют диагональным сечением призмы.

В прямых призмах диагональные сечения являются прямоугольниками. Через равные диагонали проходят равные диагональные сечения.

На рисунке - правильная шестиугольная призма, в которой проведены два разных диагональных сечения, которые проходят через диагонали с разными длинами.

Основные формулы для расчётов в прямых призмах

1. Боковая поверхность S бок. = P осн. ⋅ H , где \(H\) - высота призмы. Для наклонных призм площадь каждой боковой грани определяется отдельно.

2. Полная поверхность S полн. = 2 ⋅ S осн. + S бок. . Эта формула справедлива для всех призм, не только для прямых.

3. Объём V = S осн. ⋅ H . Эта формула справедлива для всех призм, не только для прямых.

Пирамида

\(n\)-угольная пирамида - многогранник, составленный из \(n\)-угольника в основании и \(n\)-треугольников, которые образовались при соединении точки вершины пирамиды со всеми вершинами многоугольника основания.

\(n\)-угольник называют основанием пирамиды.

Треугольники - боковые грани пирамиды.

Общая вершина треугольников - вершина пирамиды.

Рёбра, выходящие из вершины - боковые рёбра пирамиды.

Перпендикуляр от вершины пирамиды к плоскости основания называют высотой пирамиды.

Муниципальное Образовательное Учреждение

Гимназия № 26

Геометрия

Основные виды многогранников и их свойства

Выполнила:

Ученица 9-1 класса

Байсакова Ляззат

Преподаватель:

Сысоева Елена Алексеевна

Челябинск


Введение

До настоящего времени в курсе геометрии мы занимались планиметрией - изучали свойства плоских геометрических фигур, то есть фигур, полностью расположенных в плоскости. Но большинство окружающих нас предметов не являются полностью плоскими, они расположены в пространстве. Раздел геометрии, в котором изучают свойства фигур в пространстве, называется стереометрией ( от др. греч. στερεός, "стереос" - "твёрдый, пространственный" и μετρέω - "измеряю").

Основными фигурами в пространстве являются точка , прямая и плоскость . Наряду с данными простейшими фигурами в стереометрии рассматриваются геометрические тела и их поверхности. При изучении геометрических тел, пользуются изображениями на чертеже.

Рисунок 1 Рисунок 2

На рисунке 1 изображена пирамида, на рисунке 2 - куб. Данные геометрические тела называются многогранниками. Рассмотрим некоторые виды и свойства многогранников.

Многогранная поверхность. Многогранник

Многогранной поверхностью называют объединение конечного числа плоских многоугольников такое, что каждая сторона любого из многоугольников является в то же время стороной другого (но только одного) многоугольника, называемого смежным с первым многоугольником.

От любого из многоугольников, составляющих многогранную поверхность, можно дойти до любого другого, двигаясь по смежным многоугольникам.

Многоугольники, составляющие многогранную поверхность, называются ее гранями; стороны многоугольников называются ребрами, а вершины - вершинами многогранной поверхности.

На рис.1 изображены объединения многоугольников, удовлетворяющие указанным требованиям и являющиеся многогранными поверхностями. На рис.2 изображены фигуры, не являющиеся многогранными поверхностями.

Многогранная поверхность делит пространство на две части - внутреннюю область многогранной поверхности и внешнюю область. Из двух областей внешней будет та, в которой можно провести прямые, целиком принадлежащие области.

5 Объединение многогранной поверхности и ее внутренней области называют многогранником. При этом многогранную поверхность и ее внутреннюю область называют соответственно поверхностью и внутренней областью многогранника. Грани, ребра и вершины поверхности многогранника называют соответственно гранями, ребрами и вершинами многогранника.

Пирамида

Многогранник, одна из граней которого - произвольный многогранник, а остальные грани - треугольники, имеющие одну общую вершину, называется пирамидой.

Многоугольник называется основанием пирамиды, а остальные грани (треугольники) называются боковыми гранями пирамиды.

Различают треугольные, четырехугольные, пятиугольные и т.д. пирамиды в зависимости от вида многоугольника, лежащего в основании пирамиды.

Треугольную пирамиду также называют тетраэдром. На рис.1 изображена четырехугольная пирамида SABCD с основанием ABCD и боковыми гранями SAB, SBC, SCD, SAD.

Стороны граней пирамиды называются ребрами пирамиды. Ребра, принадлежащие основанию пирамиды, называют ребрами основания, а все остальные ребра - боковыми ребрами. Общая вершина всех треугольников (боковых граней) называется вершиной пирамиды (на рис.1 точка S - вершина пирамиды, отрезки SA, SB, SC, SD - боковые ребра, отрезки АВ, ВС, CD, AD - ребра основания).

Высотой пирамиды называется отрезок перпендикуляра, проведенного из вершины пирамиды S к плоскости основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра). На рис.1 SO - высота пирамиды.

Правильная пирамида. Пирамида называется правильной, если основанием пирамиды является правильный многоугольник, а ортогональная проекция вершины на плоскость основания совпадает с центром многоугольника, лежащего в основании пирамиды.

Все боковые ребра правильной пирамиды равны между собой; все боковые грани - равные равнобедренные треугольники.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой этой пирамиды. На рис.2 SN - апофема. Все апофемы правильной пирамиды равны между собой.

Призма

Многогранник, две грани которого - равные n -угольники, лежащие в параллельных плоскостях, а остальные n граней - параллелограммы, называетсяn -угольной призмой.

многогранник пирамида призма параллелепипед

Пару равных n -угольников называют основаниями призмы. Остальные грани призмы называют ее боковыми гранями, а их объединение - боковой поверхностью призмы. На рис.1 изображена пятиугольная призма.

Стороны граней призмы называют ребрами, а концы ребер - вершинами призмы. Ребра, не принадлежащие основанию призмы, называют боковыми ребрами.

Призму, боковые ребра которой перпендикулярны плоскостям оснований, называют прямой призмой. В противном случае призма называется наклонной.

Отрезок перпендикуляра к плоскостям оснований призмы, концы которого принадлежат этим плоскостям, называют высотой призмы.

Прямая призма, основанием которой является правильный многоугольник, называется правильной призмой.

Параллелепипед

Параллелепипед - шестигранник, противоположные грани которого попарно параллельны. Параллелепипед имеет 8 вершин, 12 рёбер; его грани представляют собой попарно равные параллелограммы.

Параллелепипед называется прямым, если его боковые ребра перпендикулярны к плоскости основания (в этом случае 4 боковые грани - прямоугольники); прямоугольным, если этот параллелепипед прямой и основанием служит прямоугольник (следовательно, 6 граней - прямоугольники);

Параллелепипед , все грани которого квадраты, называется кубом.

Объём Параллелепипед равен произведению площади его основания на высоту.

Объем тела

Каждый многогранник имеет объем, который можно измерить с помощью выбранной единицы измерения объемов. За единицу измерения объемов принимают куб, ребро которого равно единице измерения отрезков. Куб с ребром 1 см называется кубическим сантиметром . Аналогично определяется кубический метр и кубический миллиметр , и т.д.

В процессе измерения объемов при выбранной единице измерения объем тела выражается положительным числом, которое показывает, сколько единиц измерения объемов и ее частей укладывается в этом теле. Число, выражающее объем тела, зависит от выбора единицы измерения объемов. Поэтому единица измерения объемов указывается после этого числа.

Основные свойства объемов:

1. Равные тела имеют равные объемы.

2. Если тело составлено из нескольних тел, то его объем равен сумме объемов этих тел.

Для нахождения объемов тел в ряде случаев удобно пользоваться теоремой, получившей название принцип Кавальери .

Принцип Кавальери состоит в следующем: если при пересечении двух тел любой плоскостью, параллельной некоторой заданной плоскости, получаются сечения равной площади, то объёмы тел равны между собой.

Заключение

Итак, многогранники изучает раздел геометрии под названием стереометрия. Многогранники бывают разных видов (пирамида, призма и т.д.) и имеют разные свойства. Также, следует отметить, что многогранники в отличие от плоских фигур имеют объем и располагаются в пространстве.

Большинство окружающих нас предметов находятся в пространстве, и изучение многогранников помогает нам составить представление об окружающей нас реальности с точки зрения геометрии.

Список используемой литературы

1. Геометрия. Учебник для 7-9 классов.

3. Википедия