Catad_tema Бронхиальная астма и ХОБЛ - статьи

Catad_tema Педиатрия - статьи

Л.Д. Горячкина, Н.И. Ильина, Л.С. Намазова, Л.М. Огородова, И.В. Сидоренко, Г.И. Смирнова, Б.А. Черняк

Главной целью лечения больных бронхиальной астмой является достижение и длительное поддержание контроля над заболеванием. Лечение должно начинаться с оценки текущего контроля над астмой, а объем терапии – регулярно пересматриваться, чтобы обеспечить достижение этого контроля.

Лечение бронхиальной астмы (БА) включает:

  1. Элиминационные мероприятия, направленные на уменьшение или исключение воздействия причинных аллергенов ().
  2. Фармакотерапию.
  3. Аллерген-специфическую иммунотерапию (АСИТ).
  4. Обучение больных.

ФАРМАКОТЕРАПИЯ

Для лечения БА у детей используют препараты, которые можно разделить на две большие группы:

  1. Средства базисной (поддерживающей, противовоспалительной) терапии.
  2. Симптоматические средства.

К препаратам базисной терапии относятся:

  • лекарственные средства (ЛС) с противовоспалительным и/или профилактическим эффектом (глюкокортикостероиды (ГКС), антилейкотриеновые препараты, кромоны, анти-IgE-препараты);
  • длительно действующие бронходилататоры (длительно действующие β 2 -адреномиметики, препараты теофиллина с медленным высвобождением).

Наибольшая клиническая и патогенетическая эффективность показана при использовании ингаляционных ГКС (ИГКС). Все средства базисной противовоспалительной терапии принимаются ежедневно и длительно. Принцип регулярности использования базисных препаратов позволяет достигать контроля над болезнью. Необходимо отметить, что в нашей стране для базисной терапии БА у детей с использованием комбинированных препаратов, содержащих ИГКС (с 12-часовым перерывом), зарегистрирован лишь режим стабильного дозирования. Другие схемы использования комбинированных препаратов у детей не разрешены.

К симптоматическим средствам относятся:

  • ингаляционные короткодействующие β 2 -адреномиметики;
  • антихолинергические препараты;
  • препараты теофиллина с немедленным высвобождением;
  • пероральные короткодействующие β 2 -адреномиметики.

Симптоматические препараты также называют средствами «скорой помощи». Их необходимо использовать для устранения бронхообструкции и сопутствующих ей острых симптомов (свистящие хрипы, чувство стеснения в груди, кашель). Данный режим применения лекарственных средств называется «по требованию».

ПУТИ ДОСТАВКИ ЛЕКАРСТВ

Препараты для лечения БА вводят различными путями: пероральным, парентеральным и ингаляционным (последний предпочтительнее). При выборе устройства для ингаляции учитывают эффективность доставки ЛС, стоимость/эффективность, удобство применения и возраст пациента (табл. 1). У детей для ингаляций используются три типа устройств: небулайзеры, дозирующие аэрозольные ингаляторы (ДАИ) и порошковые ингаляторы.

Таблица 1. Средства доставки лекарств при БА (возрастные приоритеты)

Средство Рекомендуемая
возрастная группа
Комментарии
Дозирующий аэрозольный ингалятор (ДАИ) > 5 лет Сложно координировать момент вдоха и нажатия на клапан баллончика (особенно детям). Около 80% дозы оседает в ротоглотке, необходимо полоскание полости рта после каждой ингаляции с целью снижения системной абсорбции
ДАИ, активируемый вдохом > 5 лет Применение данного средства доставки показано пациентам, не способным координировать момент вдоха и нажатия на клапан обычных ДАИ. Не может быть использован ни с одним из существующих спейсеров, кроме «оптимизатора» для данного типа ингаляторов
Порошковый ингалятор (ПИ) ≥ 5 лет При правильной технике использования эффективность ингаляции может быть выше, чем при применении ДАИ. Необходимо полоскать полость рта после каждого применения
Спейсер > 4 лет
< 4 лет при
применении
лицевой маски
Использование спейсера снижает оседание препарата в ротоглотке, позволяет применять ДАИ с большей эффективностью, в случае наличия маски (в комплекте со спейсером) может быть использован у детей младше 4 лет
Небулайзер < 2 лет
(пациенты любого
возраста, которые
не могут использовать
спейсер или
спейсер/лицевую
маску)
Оптимальное средство доставки ЛС для использования в специализированных отделениях и отделениях интенсивной терапии, а также при оказании неотложной помощи, так как требует наименьших усилий от пациента и врача

ПРОТИВОВОСПАЛИТЕЛЬНЫЕ (БАЗИСНЫЕ) ПРЕПАРАТЫ

I. Ингаляционные глюкокортикостероиды и комбинированные средства, содержащие ИГКС

В настоящее время ИГКС являются самыми эффективными препаратами для контроля БА, поэтому их рекомендуют для лечения персистирующей БА любой степени тяжести А. У детей школьного возраста, страдающих БА, поддерживающая терапия ИГКС позволяет контролировать симптомы БА, уменьшает частоту обострений и количество госпитализаций, повышает качество жизни, улучшает функцию внешнего дыхания, снижает гиперреактивность бронхов и уменьшает бронхоконстрикцию при физической нагрузке А. Применение ИГКС у детей дошкольного возраста, страдающих БА, приводит к клинически значимому улучшению состояния, включая балльную оценку дневного и ночного кашля, свистящего дыхания и одышки, физической активности, применения препаратов неотложного действия и использования ресурсов системы здравоохранения.

У детей применяют следующие ИГКС: беклометазон, флутиказон, будесонид. Дозы препаратов, используемых для базисной терапии, разделяют на низкие, средние и высокие. Прием ИГКС в низких дозах является безопасным, при назначении более высоких доз необходимо помнить о возможности развития побочных эффектов. Эквипотентные дозы, представленные в таблице 2, выработаны эмпирически, поэтому при выборе и смене ИГКС следует учитывать индивидуальные особенности пациента (ответ на терапию).

Таблица 2. Эквипотентные суточные дозы ИГКС

Препарат* Низкие суточные
дозы (мкг)
Средние суточные
дозы (мкг)
Высокие суточные
дозы (мкг)

Дозы для детей младше 12 лет

Беклометазона дипропионат 100–200 > 200–400 > 400
Будесонид 100–200 > 200–400 > 400
Флутиказон 100–200 > 200–500 > 500

Дозы для детей старше 12 лет

Беклометазона дипропионат 200–500 > 500–1000 > 1000–2000
Будесонид 200–400 > 400–800 > 800–1600
Флутиказон 100–250 > 250–500 > 500–1000

*Сопоставления препаратов основаны на данных об их сравнительной эффективности.

ИГКС входят в состав комбинированных препаратов для лечения БА. Такими препаратами являются Серетид (сальметерол + флутиказона пропионат) и Симбикорт (формотерол + будесонид). В большом количестве клинических исследований показано, что комбинация длительно действующих β 2 -адреномиметиков и ИГКС в низкой дозе более эффективна, чем увеличение дозы последнего. Комбинированная терапия сальметерол + флутиказон (в одном ингаляторе) способствует лучшему контролю БА, чем длительно действующий β 2 -адреномиметик и ИГКС в отдельных ингаляторах. На фоне длительной терапии сальметерол + флутиказон практически у каждого второго пациента можно достичь полного контроля БА (по данным исследования, включавшего пациентов в возрасте 12 лет и старше). Также отмечается значительное улучшение показателей эффективности терапии (ПСВ, ОФВ1, частоты обострений, качества жизни). В том случае, если применение низких доз ИГКС у детей не позволяет достичь контроля над БА, рекомендован переход на терапию комбинированным препаратом, что может быть хорошей альтернативой повышению дозы ИГКС. Это было показано в новом проспективном многоцентровом двойном слепом рандомизированном исследовании в параллельных группах продолжительностью 12 недель, где сравнивали эффективность комбинации сальметерол + флутиказон (в дозе 50/100 мкг 2 раза в сутки) и в 2 раза более высокой дозы флутиказона пропионата (200 мкг 2 раза в сутки) у 303 детей 4–11 лет с сохраняющимися симптомами БА, несмотря на предшествующую терапию низкими дозами ИГКС. Оказалось, что регулярное применение комбинации сальметерол + флутиказон (Серетид) предотвращает симптомы и обеспечивает достижение контроля над астмой так же эффективно, как и вдвое большая доза ИГКС. Лечение Серетидом сопровождается более выраженным улучшением функции легких и снижением потребности в препаратах для облегчения симптомов астмы при хорошей переносимости: в группе Серетида прирост утренней ПСВ на 46% выше, а число детей с полным отсутствием потребности в «спасательной терапии» на 53% больше, чем в группе флутиказона. Терапия с использованием комбинации формотерол + будесонид в составе одного ингалятора обеспечивает лучший контроль симптомов БА по сравнению с одним будесонидом у пациентов, у которых ранее ИГКС не обеспечивали контроля симптомов.

Влияние ИГКС на рост

Неконтролируемая или тяжелая БА замедляет рост детей и уменьшает итоговый рост. Ни в одном из продолжительных контролируемых исследований не показано никакого статистически или клинически значимого влияния на рост терапии ИКГ в дозе 100–200 мкг/сутки. Замедление линейного роста возможно при длительном назначении любого ИГКС в высокой дозе. Однако дети с БА, получающие ИГКС, достигают нормального роста, хотя иногда позднее, чем другие дети.

Влияние ИГКС на костную ткань

Ни в одном исследовании не было показано статистически значимого увеличения риска переломов костей у детей, получающих ИГКС.

Влияние ИГКС на гипоталамо-гипофизарно-надпочечниковую систему

Терапия ИГКС в дозе ИГКС и кандидоз полости рта

Клинически выраженная молочница отмечается редко и, вероятно, связана с сопутствующей терапией антибиотиками, применением высоких доз ИГКС и большой частотой ингаляций. Использование спейсеров и полоскание рта уменьшает частоту кандидоза.

Другие побочные эффекты

На фоне регулярной базисной противовоспалительной терапии не отмечено увеличения риска катаракты и туберкулеза.

II. Антагонисты лейкотриеновых рецепторов

Антилейкотриеновые препараты (зафирлукаст, монтелукаст) обеспечивают частичную защиту от бронхоспазма, вызванного физической нагрузкой, в течение нескольких часов после приема. Добавление антилейкотриеновых препаратов к лечению в случае недостаточной эффективности низких доз ИГКС обеспечивает умеренное клиническое улучшение, в том числе статистически значимое уменьшение частоты обострений. Клиническая эффективность терапии антилейкотриеновыми препаратами была показана у детей в возрасте > 5 лет при всех степенях тяжести БА, однако обычно эти препараты по эффективности уступают ИГКС в низких дозах. Антилейкотриеновые препараты можно использовать для усиления терапии у детей при среднетяжелой БА в тех случаях, когда заболевание недостаточно контролируется применением низких доз ИГКС. При использовании антагонистов лейкотриеновых рецепторов в качестве монотерапии у больных с тяжелой и среднетяжелой БА отмечают умеренное улучшение функции легких (у детей 6 лет и старше) и контроля БА (у детей 2 лет и старше) B . Зафирлукаст обладает умеренной эффективностью в отношении функции внешнего дыхания у детей 12 лет и старше со среднетяжелой и тяжелой БА А.

III. Кромоны

Недокромил и кромоглициевая кислота менее эффективна, чем ИГКС, в отношении клинических симптомов, функции внешнего дыхания, БА физического усилия, гиперреактивности дыхательных путей. Длительная терапия кромоглициевой кислотой при БА у детей по эффективности не отличается значительно от плацебо А. Недокромил, назначенный перед физической нагрузкой, позволяет уменьшить тяжесть и продолжительность вызванной ею бронхоконстрикции. Кромоны противопоказаны при обострении БА, когда требуется интенсивная терапия бронхорасширяющими препаратами быстрого действия. Роль кромонов в базисной терапии БА у детей (особенно у дошкольников) ограничена, в связи с отсутствием доказательств их эффективности. Проведенный в 2000 году метаанализ не позволил сделать однозначный вывод об эффективности кромоглициевой кислоты как средства базисной терапии БА у детей B . Следует помнить, что препараты данной группы не могут быть использованы для стартовой терапии среднетяжелой и тяжелой астмы. Применение кромонов в качестве базисной терапии возможно у пациентов с полным контролем симптомов БА. Кромоны не следует сочетать с β 2 -агонистами длительного действия, так как применение данных препаратов без ИГКС повышает риск смерти от астмы.

IV. Анти-IgE-препараты

Это принципиально новый класс ЛС, используемых сегодня для улучшения контроля над тяжелой персистирующей атопической БА. Омализумаб – наиболее изученный, первый и единственный рекомендованный к применению у детей старше 12 лет препарат. Высокая стоимость лечения омализумабом, а также необходимость ежемесячных визитов к врачу для инъекционного введения препарата оправданны у больных, нуждающихся в повторных госпитализациях, экстренной медицинской помощи, применяющих высокие дозы ингаляционных и/или системных ГКС.

V. Метилксантины длительного действия

Теофиллин значительно более эффективен, чем плацебо, для контроля БА и улучшения функции легких даже в дозах ниже обычно рекомендуемого терапевтического диапазонаА. Однако применение теофиллинов для лечения БА у детей проблематично из-за возможности тяжелых быстро возникающих (сердечная аритмия, смерть) и отсроченных (нарушение поведения, проблемы в обучении) побочных эффектов. В связи с чем применение теофиллинов возможно только под строгим фармакодинамическим контролем.

VI. Длительно действующие β 2 -агонисты Ингаляционные β 2 -адреномиметики длительного действия

Препараты этой группы эффективны для поддержания контроля БА (рис. 1). На постоянной основе их применяют только в комбинации с ИГКС и назначают только тогда, когда стандартные начальные дозы ИГКС не позволяют достичь контроля БА. Эффект этих препаратов сохраняется на протяжении 12 часов. Формотерол в виде ингаляций оказывает свое терапевтическое действие (расслабление гладкой мускулатуры бронхов) через 3 минуты, максимальный эффект развивается через 30–60 минут после ингаляции. Сальметерол начинает действовать относительно медленно, значимый эффект отмечают через 10–20 минут после ингаляции однократной дозы (50 мкг), а эффект, сопоставимый с таковым после приема сальбутамола, развивается через 30 минут. Из-за медленного начала действия сальметерол не следует назначать для купирования острых симптомов БА. Так как действие формотерола развивается быстрее, чем действие сальметерола, это позволяет использовать формотерол не только для профилактики, но и для купирования симптомов БА. Однако, согласно рекомендациям GINA 2006, длительнодействующие β 2 -адреномиметики могут быть использованы только у больных, уже получающих регулярную поддерживающую терапию ИГКС.

Рисунок 1. Классификация β 2 -агонистов

Дети хорошо переносят лечение ингаляционными β 2 -адреномиметиками длительного действия даже при продолжительном применении, а их побочные эффекты сопоставимы с таковыми β 2 -адреномиметиков короткого действия (в случае их применения по требованию). Препараты данной группы следует назначать только совместно с базисной терапией ИГКС, так как монотерапия β 2 -адреномиметиками длительного действия без ИГКС увеличивает вероятность смерти больных! Вследствие противоречивых данных о влиянии на обострения БА эти средства не являются препаратами выбора для пациентов, нуждающихся в назначении двух и более средств поддерживающей терапии.

Пероральные β 2 -адреномиметики длительного действия

Препараты этой группы включают лекарственные формы сальбутамола длительного действия. Эти ЛС могут помочь в контроле ночных симптомов БА. Их можно использовать в дополнение к ИГКС, если последние в стандартных дозах не обеспечивают достаточного контроля ночных симптомов. Возможные побочные эффекты включают стимуляцию сердечно-сосудистой системы, тревогу и тремор. В нашей стране в педиатрии препараты данной группы используются редко.

VII. Антихолинергические препараты

Ингаляционные антихолинергические средства не рекомендованы для длительного применения (базисной терапии) у детей с БА.

VIII. Системные ГКС

Несмотря на то что системные ГКС эффективны в отношении БА, необходимо учитывать развитие нежелательных явлений при длительной терапии, таких как угнетение гипоталамо-гипофизарно-надпочечниковой системы, увеличение массы тела, стероидный диабет, катаракта, АГ, задержка роста, иммунносупрессия, остеопороз, психические расстройства. Учитывая риск побочных эффектов при длительном применении, пероральные ГКС следует использовать у детей с астмой только в случае развития тяжелых обострений, как на фоне вирусной инфекции, так и в ее отсутствие.

СРЕДСТВА НЕОТЛОЖНОЙ ТЕРАПИИ

Ингаляционные β 2 -адреномиметики быстрого действия (короткодействующие β 2 -агонисты) самые эффективные из существующих бронхолитиков, они являются препаратами выбора для лечения острого бронхоспазма А (рис. 1). К данной группе препаратов относятся сальбутамол, фенотерол и тербуталин (табл. 3).

Таблица 3. Препараты неотложной помощи при БА

Препарат Доза Побочные эффекты Комментарии

β 2 -адреномиметики

Сальбутамол (ДАИ) 1 доза – 100 мкг
По 1–2 ингаляции
до 4 раз в день
Тахикардия, тремор,
головная боль, раздражительность
Рекомендованы только в режиме «по требованию»
Сальбутамол (раствор
для небулайзерной терапии)
2,5 мг/2,5 мл
Фенотерол (ДАИ) 1 доза – 100 мкг
По 1–2 ингаляции
до 4 раз в день
Фенотерол (раствор
для небулайзерной терапии)
1 мг/мл

Антихолинергические препараты

Ипратропия бромид (ДАИ) с 4 лет 1 доза – 20 мкг
По 2–3 ингаляции
до 4 раз в день
Незначительная
сухость
и неприятный
вкус во рту
Преимущественно
применяется у детей
до 2 лет
Ипратропия бромид (раствор для небулайзерной терапии) 250 мкг/мл

Комбинированные препараты

Фенотерол + ипратропия бромид (ДАИ) По 2 ингаляции до 4 раз в день Тахикардия, тремор, головная боль,
раздражительность, незначительная сухость и неприятный вкус во рту
Характерны побочные
эффекты, указанные для
каждого из входящих
в состав комбинации
средств
Фенотерол + ипратропия
бромид (раствор
для небулайзерной терапии)
1–2 мл

Теофиллин короткого действия

Эуфиллин в любой лекарственной форме 150 мг
> 3 лет
по 12–24 мг/кг/сут
Тошнота, рвота,
головная боль,
тахикардия,
нарушения
сердечного ритма
В настоящее время
Использование
эуфиллина у детей для
купирования симптомов
БА не оправдано

Антихолинергические средства имеют ограниченную роль в лечении БА у детей. В метаанализе исследований ипратропиума бромида в комбинации с β 2 -агонистами при обострении БА показано, что применение антихолинергического препарата сопровождается статистически значимым (хотя и умеренным) улучшением функции легких и снижением риска госпитализации.

ДОСТИЖЕНИЕ КОНТРОЛЯ НАД АСТМОЙ

В процессе лечения должна проводиться постоянная оценка и коррекция терапии на основе изменений уровня контроля над астмой. Весь цикл терапии включает:

  • оценку уровня контроля над БА;
  • лечение, направленное на достижение контроля;
  • лечение с целью поддержания контроля.

Оценка уровня контроля над БА

Контроль над БА является комплексным понятием, включающим совокупность следующих показателей:

  • минимальное количество или отсутствие (≤ 2 эпизодов в неделю) дневных симптомов БА;
  • отсутствие ограничений в повседневной активности и физических нагрузках;
  • отсутствие ночных симптомов и пробуждений из-за БА;
  • минимальная потребность или отсутствие потребности (≤ 2 эпизодов в неделю) в бронхолитиках короткого действия;
  • нормальные или практически нормальные показатели функции легких;
  • отсутствие обострений БА.

В соответствии с GINA 2006, выделяют три уровня контроля над БА: контролируемую, частично контролируемую и неконтролируемую БА. В настоящее время разработано несколько инструментов для интегральной оценки уровня контроля над БА. Одним из таких инструментов является Тест по контролю над бронхиальной астмой у детей (Childhood Asthma Control Test) в возрасте 4–11 лет – валидизированный опросник, позволяющий врачу и пациенту (родителю) быстро оценить выраженность проявлений БА и потребность в увеличении объема терапии. Тест состоит из 7 вопросов, причем вопросы 1–4 предназначены для ребенка (4-балльная оценочная шкала ответов: от 0 до 3 баллов), а вопросы 5–7 – для родителей (6-балльная шкала: от 0 до 5 баллов). Результатом теста является сумма оценок за все ответы в баллах (максимальная оценка – 27 баллов). Оценка 20 баллов и выше соответствует контролируемой астме, 19 баллов и ниже означает, что астма контролируется недостаточно эффективно; пациенту рекомендуется воспользоваться помощью врача для пересмотра плана лечения. В этом случае необходимо также расспросить ребенка и его родителей о препаратах для ежедневного применения, чтобы убедиться в правильности техники ингаляций и соблюдении режима лечения. Осуществить тестирование по контролю над астмой можно на сайте www.astmatest.ru.

Лечение, направленное на поддержание контроля

Выбор медикаментозной терапии зависит от текущего уровня контроля над астмой и текущей терапии пациента. Так, если текущая терапия не обеспечивает контроля над БА, необходимо увеличивать объем терапии (переходить на более высокую ступень) до достижения контроля. В случае сохранения контроля над БА в течение 3 месяцев и более возможно уменьшение объема поддерживающей терапии с целью достижения минимального объема терапии и наименьших доз препаратов, достаточных для поддержания контроля. В случае достижения частичного контроля над БА следует рассмотреть возможность увеличения объема терапии с учетом наличия более эффективных подходов к лечению (т.е. возможности увеличения доз или добавления других препаратов), их безопасности, стоимости и удовлетворенности пациента достигнутым уровнем контроля.

Большинство препаратов для лечения БА отличаются благоприятными сочетаниями польза/риск по сравнению со средствами для лечения других хронических заболеваний. Каждая ступень включает варианты терапии, которые могут служить альтернативами при выборе поддерживающей терапии БА, хотя и не являются одинаковыми по эффективности. Объем терапии возрастает от ступени 2 к ступени 5; хотя на ступени 5 выбор лечения зависит также от доступности и безопасности лекарственных препаратов. У большинства больных с симптомами персистирующей БА, ранее не получавших поддерживающей терапии, лечение следует начинать со ступени 2. Если симптомы БА при первичном осмотре чрезвычайно выражены и указывают на отсутствие контроля, лечение необходимо начинать со ступени 3 (табл. 4). На каждой ступени терапии пациенты должны использовать препараты для быстрого облегчения симптомов БА (бронходилататоры быстрого действия). Однако регулярное использование препаратов для облегчения симптомов является одним из признаков неконтролируемой БА, указывающим на необходимость увеличения объема поддерживающей терапии. Поэтому уменьшение или отсутствие потребности в препаратах неотложной терапии является важной целью лечения и критерием эффективности терапии.

Таблица 4. Соответствие ступеней терапии клиническим характеристикам БА

Ступени терапии Клиническая характеристика пациентов
Ступень 1 Кратковременные (до нескольких часов) симптомы БА в дневное время (кашель, свистящие хрипы, одышка возникающие ≤ 2 раз в неделю или еще более редкие ночные симптомы). В межприступный период – отсутствуют проявления БА и ночные пробуждения, функция легких в пределах нормы. ПСВ ≥ 80% от должных значений
Ступень 2 Симптомы БА чаще 1 раза в неделю, но реже 1 раза в день. Обострения могут нарушать активность пациентов и ночной сон. Ночные симптомы чаще 2 раз в месяц. Функциональные показатели внешнего дыхания в пределах возрастной нормы. В межприступный период – отсутствуют проявления БА и ночные пробуждения, переносимость физической нагрузки не снижена. ПСВ ≥ 80% от должных значений
Ступень 3 Симптомы БА отмечаются ежедневно. Обострения нарушают физическую активность ребенка и ночной сон. Ночные симптомы чаще 1 раза в неделю. В межприступном периоде отмечаются эпизодические симптомы, сохраняются изменения функции внешнего дыхания. Переносимость физической нагрузки может быть снижена. ПСВ 60–80% от должных значений
Ступень 4 Частое (несколько раз в неделю или ежедневно, по несколько раз в день) появление симптомов БА, частые ночные приступы удушья. Частые обострения заболевания (1 раз в 1–2 месяца). Ограничение физической активности и выраженные нарушения функции внешнего дыхания. В периоде ремиссии сохраняются клинико-функциональные проявления бронхиальной обструкции. ПСВ ≤ 60% от должных значений
Ступень 5 Ежедневные дневные и ночные симптомы, по несколько раз в день. Выраженное ограничение физической активности. Выраженные нарушения функции легких. Частые обострения (1 раз в месяц и чаще). В периоде ремиссии сохраняются выраженные клинико-функциональные проявления бронхиальной обструкции. ПСВ < 60% от должных значений

Ступень 1 , включающая применение препаратов для облегчения симптомов по потребности, предназначена только для пациентов, не получавших поддерживающей терапии. В случае более частого появления симптомов или эпизодического ухудшения состояния пациентам показана регулярная поддерживающая терапия (в дополнение к препаратам для облегчения симптомов по потребности.

Ступени 2–5 включают комбинацию препарата для облегчения симптомов (по потребности) с регулярной поддерживающей терапией. В качестве начальной поддерживающей терапии БА у больных любого возраста на ступени 2 рекомендуются ИГКС в низкой дозе. Альтернативными средствами являются ингаляционные антихолинергические препараты, пероральные β 2 -агонисты короткого действия или теофиллин короткого действия. Однако для этих препаратов характерно более медленное начало действия и более высокая частота побочных эффектов.

На ступени 3 рекомендуется назначать комбинацию ИГКС в низкой дозе с ингаляционным (β 2 -агонистом длительного действия в виде фиксированной комбинации. Благодаря аддитивному эффекту комбинированной терапии пациентам обычно оказывается достаточно назначения низких доз ИГКС; увеличение дозы ИГКС требуется только пациентам, у которых контроль над БА не был достигнут через 3–4 месяца терапии. Показано, что β 2 -агонист длительного действия формотерол, для которого характерно быстрое начало действия при применении в виде монотерапии или в составе фиксированной комбинации с будесонидом, не менее эффективен для купирования острых проявлений БА, чем β 2 -агонисты короткого действия. Однако монотерапия формотеролом для облегчения симптомов не рекомендуется, и этот препарат должен всегда использоваться только вместе с ИГКС. У всех детей, а в особенности у детей в возрасте 5 лет и младше, комбинированная терапия изучена в меньшей степени, чем у взрослых. Однако в недавнем исследовании показано, что добавление β 2 -агониста длительного действия более эффективно, чем увеличение дозы ИГКС. Вторым вариантом терапии является увеличение доз ИГКС до средних доз. Больным любого возраста, получающим средние или высокие дозы ИГКС с помощью ДАИ, рекомендовано применение спейсера для улучшения доставки препарата в дыхательные пути, снижения риска орофарингеальных побочных эффектов и системной абсорбции препарата. Еще одним альтернативным вариантом терапии на ступени 3 является комбинация ИГКС в низкой дозе с антилейкотриеновым препаратом. Вместо антилейкотриенового препарата возможно назначение низкой дозы теофиллина замедленного высвобождения. Эти варианты терапии не исследовались у детей в возрасте 5 лет и младше.

Выбор препаратов на ступени 4 зависит от предшествующих назначений на ступенях 2 и 3. Однако порядок добавления дополнительных препаратов должен быть основан на доказательствах их сравнительной эффективности, полученных в клинических исследованиях. Больных, у которых не был достигнут контроль над БА на ступени 3, следует направлять (если есть возможность) к специалисту в области лечения БА с целью исключения альтернативных диагнозов и/или причин БА, трудно поддающейся терапии. Предпочтительным подходом к лечению на ступени 4 является использование комбинации ГКС в средней или высокой дозе с ингаляционным β 2 -агонистом длительного действия. Длительное применение ИГКС в высоких дозах сопровождается повышенным риском развития побочных эффектов.

Терапия ступени 5 требуется пациентам, у которых не достигнут эффект лечения на фоне применения высоких доз ИГКС в комбинации с β 2 -агонистами длительного действия и другими препаратами для поддерживающей терапии. Добавление перорального ГКС к другим препаратам для поддерживающей терапии может увеличивать эффект лечения, но сопровождается тяжелыми нежелательными явлениями. Больной должен быть предупрежден о риске развития побочных эффектов; также необходимо рассмотреть возможность всех других альтернатив терапии БА.

Схемы уменьшения объема базисной терапии БА

Если контроль над БА достигнут на фоне базисной терапии комбинацией ИГКС и β 2 -агониста длительного действия и поддерживается не менее 3 месяцев, можно начинать постепенное уменьшение ее объема: снижения дозы ИГКС не более чем на 50% в течение 3 месяцев при продолжении терапии β 2 -агонистом длительного действия. При сохранении полного контроля на фоне терапии низкими дозами ИГКС и β 2 -агонистом длительного действия 2 раза в сутки следует отменить последний и продолжать терапию ИГКСB. Достижение контроля на фоне применения кромонов не требует редукции их дозы.

Другая схема уменьшения объема базисной терапии у больных, получающих ИГКС и β 2 -агонист длительного действия и, предполагает отмену последнего на первом этапе при продолжении монотерапией ИГКС в такой же дозе, какая содержалась в фиксированной комбинации. В последующем постепенно снижать дозу ИГКС не более чем на 50% в течение 3 месяцев при условии сохранения полного контроля над БА. Монотерапия β 2 -агонистом длительного действия без ИГКС недопустима, так как может сопровождаться увеличением риска смерти больных БА. Прекращение поддерживающей терапии возможно, если полный контроль над БА сохраняется при использовании минимальной дозы противовоспалительного препарата, отсутствии рецидива симптомов в течение одного года D .

При уменьшении объема противовоспалительной терапии следует учитывать спектр чувствительности пациентов к аллергенам. Например, перед сезоном цветения у пациентов с БА и пыльцевой сенсибилизацией категорически нельзя уменьшать дозы применяемых базисных средств, напротив, объем противовоспалительной терапии на этот период следует увеличить!

Увеличение объема базисной терапии в ответ на утрату контроля над астмой

Объем терапии следует увеличивать при утрате контроля над БА (увеличении частоты и тяжести симптомов БА, потребности в ингаляции β 2 -агонистов в течение 1–2 дней, снижении показателей пикфлоуметрии или ухудшении переносимости физической нагрузки). Объем терапии БА регулируется в течение года в соответствии со спектром сенсибилизации причиннозначимых аллергенов. Для купирования у больных БА остро возникших нарушений бронхиальной проходимости используют сочетание бронхолитических (β 2 -агонисты, антихолинергические препараты, метилксантины) и ГКС препаратов. Предпочтение следует отдавать ингаляционным формам доставки, позволяющим достичь быстрого эффекта при минимальном общем воздействии на организм ребенка.

Имеющиеся рекомендации по уменьшению доз различных препаратов базисной терапии могут иметь достаточно высокий уровень доказательности (преимущественно B), но основываются на данных исследований, в которых оценивали только клинические показатели (симптомы, ОФВ1) и не определяли влияние уменьшенного объема терапии на активность воспаления и структурные изменения при астме. Таким образом, рекомендации по снижению объема терапии требуют проведения дальнейших исследований, направленных на оценку процессов, лежащих в основе заболевания, а не только клинических проявлений.

ОБУЧЕНИЕ ПАЦИЕНТА

Образование является необходимой составной частью комплексной программы лечения детей с БА, и подразумевает установление партнерства между пациентом, его семьей и медицинским работником.

Задачи образовательных программ:

  • информирование о необходимости элиминационных мероприятий;
  • обучение технике использования ЛС;
  • информирование об основах фрамакотерапии;
  • обучение мониторингу симптомов заболевания, пикфлуометрии (у детей старше 5 лет), ведению дневника самоконтроля;
  • составлению индивидуального плана действий при обострении.

ПРОГНОЗ

У детей с повторяющимися эпизодами свистящих хрипов на фоне ОРВИ, не имеющих признаков атопии и атопических заболеваний в семейном анамнезе, симптомы БА обычно исчезают в дошкольном возрасте и в дальнейшем не развиваются, хотя могут сохраняться минимальные изменения функции легких и бронхиальная гиперреактивность. При возникновении свистящих хрипов в раннем возрасте (до 2 лет) в отсутствие других проявлений семейной атопии вероятность того, что симптомы будут сохраняться и в более позднем возрасте, невелика. У детей раннего возраста с частыми эпизодами свистящих хрипов, БА в семейном анамнезе и проявлениями атопии, риск развития БА в возрасте 6 лет значительно увеличивается. Мужской пол является фактором риска для возникновения БА в препубертатном периоде, однако существует большая вероятность того, что по достижению взрослого возраста заболевание исчезнет. Женский пол является фактором риска персистирования БА во взрослом возрасте.

Людмила Александровна Горячкина , заведующая кафедрой аллергологии ГОУ ДПО «Российская медицинская академия последипломного образования» Росздрава, профессор, д-р мед. наук

Наталья Ивановна Ильина , главный врач ГНЦ РФ «Институт иммунологии» ФМБА, профессор, д-р мед. наук, заслуженный врач РФ

Лейла Сеймуровна Намазова , директор НИИ профилактической педиатрии и восстановительного лечения ГУ Научного центра здоровья детей РАМН, заведующая кафедрой аллергологии и клинической иммунологии ФППО педиатров ГОУ ВПО «Московская медицинская академия им. И.М. Сеченова» Росздрава, член Исполкома Союза педиатров России и Европейского общества педиатров, профессор, д-р мед. наук, главный редактор журнала «Педиатрическая фармакология»

Людмила Михайловна Огородова , проректор по научной работе и последипломной подготовке, заведующая кафедрой факультетской педиатрии с курсом детских болезней лечебного факультета ГОУ ВПО «Сибирская государственная медицинская академия» Росздрава, член-корреспондент РАМН, д-р мед. наук, профессор

Ирина Валентиновна Сидоренко , главный аллерголог комитета здравоохранения г. Москвы, доцент, канд. мед. наук

Галина Ивановна Смирнова , профессор, кафедра педиатрии ГОУ ВПО «Московская медицинская академия им. И.М. Сеченова» Росздрава, д-р мед. наук

Борис Анатольевич Черняк , заведующий кафедрой аллергологии и пульмонологии, ГОУ ДПО «Иркутский государственный институт усовершенствования врачей» Росздрава

Глюкокортикоиды — стероидные гормоны, синтезируемые корой надпочечников. Природные глюкокортикоиды и их синтетические аналоги применяются в медицине при надпочечниковой недостаточности. Кроме того, при некоторых заболеваниях используются противовоспалительные, иммунодепрессивные, противоаллергические, противошоковые и другие свойства этих препаратов.

Начало применения глюкокортикоидов в качестве лекарственных средств (ЛС ) относится к 40-м гг. XX века. Еще в конце 30-х гг. прошлого века было показано, что в коре надпочечников образуются гормональные соединения стероидной природы. В 1937 г. из коры надпочечников был выделен минералокортикоид дезоксикортикостерон, в 40-х гг. — глюкокортикоиды кортизон и гидрокортизон. Широкий спектр фармакологических эффектов гидрокортизона и кортизона предопределил возможность их использования в качестве ЛС . Вскоре был осуществлен их синтез.

Основным и наиболее активным глюкокортикоидом, образующимся в организме человека, является гидрокортизон (кортизол), другие, менее активные, представлены кортизоном, кортикостероном, 11-дезоксикортизолом, 11-дегидрокортикостероном.

Выработка гормонов надпочечников находится под контролем ЦНС и тесно связана с функцией гипофиза. Адренокортикотропный гормон гипофиза (АКТГ, кортикотропин) является физиологическим стимулятором коры надпочечников. Кортикотропин усиливает образование и выделение глюкокортикоидов. Последние, в свою очередь, влияют на гипофиз, угнетая выработку кортикотропина и уменьшая, таким образом, дальнейшую стимуляцию надпочечников (по принципу отрицательной обратной связи). Длительное введение в организм глюкокортикоидов (кортизона и его аналогов) может привести к угнетению и атрофии коры надпочечников, а также к угнетению образования не только АКТГ , но и гонадотропных и тиреотропного гормонов гипофиза.

Практическое применение в качестве ЛС из естественных глюкокортикоидов нашли кортизон и гидрокортизон. Кортизон, однако, чаще, чем другие глюкокортикоиды, вызывает побочные явления и, в связи с появлением более эффективных и безопасных препаратов в настоящее время имеет ограниченное применение. В медицинской практике используют естественный гидрокортизон или его эфиры (гидрокортизона ацетат и гидрокортизона гемисукцинат).

Синтезирован целый ряд синтетических глюкокортикоидов, среди которых выделяют нефторированные (преднизон, преднизолон, метилпреднизолон) и фторированные (дексаметазон, бетаметазон, триамцинолон, флуметазон и др.) глюкокортикоиды. Эти соединения, как правило, более активны, чем природные глюкокортикоиды, действуют в меньших дозах. Действие синтетических стероидов сходно с действием природных кортикостероидов, но они обладают различным соотношением глюкокортикоидной и минералокортикоидной активности. Более благоприятным соотношением между глюкокортикоидной/противовоспалительной и минералокортикоидной активностью отличаются фторированные производные. Так, противовоспалительная активность дексаметазона (по сравнению с таковой гидрокортизона) выше в 30 раз, бетаметазона — в 25-40 раз, триамцинолона — в 5 раз, при этом влияние на водно-солевой обмен минимально. Фторированные производные отличаются не только высокой эффективностью, но и низкой абсорбцией при местном применении, т.е. меньшей вероятностью развития системных побочных эффектов.

Механизм действия глюкокортикоидов на молекулярном уровне до конца не выяснен. Считают, что действие глюкокортикоидов на клетки-мишени осуществляется, главным образом, на уровне регуляции транскрипции генов. Оно опосредуется взаимодействием глюкокортикоидов со специфическими глюкокортикоидными внутриклеточными рецепторами (альфа-изоформа). Эти ядерные рецепторы способны связываться с ДНК и относятся к семейству лиганд-чувствительных регуляторов транскрипции. Рецепторы глюкокортикоидов обнаружены практически во всех клетках. В разных клетках, однако, количество рецепторов варьирует, они также могут различаться по молекулярной массе, сродству к гормону и другим физико-химическим характеристикам. При отсутствии гормона внутриклеточные рецепторы, которые представляют собой цитозольные белки, неактивны и входят в состав гетерокомплексов, включающих также белки теплового шока (heat shock protein, Hsp90 и Hsp70), иммунофилин с молекулярной массой 56000 и др. Белки теплового шока способствуют поддержанию оптимальной конформации гормоносвязывающего домена рецептора и обеспечивают высокое сродство рецептора к гормону.

После проникновения через мембрану внутрь клетки глюкокортикоиды связываются с рецепторами, что приводит к активации комплекса. При этом олигомерный белковый комплекс диссоциирует — отсоединяются белки теплового шока (Hsp90 и Hsp70) и иммунофилин. В результате этого рецепторный белок, входящий в комплекс в виде мономера, приобретает способность димеризоваться. Вслед за этим образовавшиеся комплексы «глюкокортикоид + рецептор» транспортируются в ядро, где взаимодействуют с участками ДНК , расположенными в промоторном фрагменте стероид-отвечающего гена — т.н. глюкокортикоид-отвечающими элементами (glucocorticoid response element, GRE) и регулируют (активируют или подавляют) процесс транскрипции определенных генов (геномный эффект). Это приводит к стимуляции или супрессии образования м-РНК и изменению синтеза различных регуляторных белков и ферментов, опосредующих клеточные эффекты.

Исследования последних лет показывают, что ГК-рецепторы взаимодействуют, кроме GRE, с различными факторами транскрипции, такими как активаторный белок транскрипции (AP-1), ядерный фактор каппа В (NF-kB) и др. Показано, что ядерные факторы AP-1 и NF-kB являются регуляторами нескольких генов, принимающих участие в иммунном ответе и воспалении, включая гены цитокинов, молекул адгезии, протеиназ и др.

Кроме того, недавно открыт еще один механизм действия глюкокортикоидов, связанный с влиянием на транскрипционную активацию цитоплазматического ингибитора NF-kB — IkBa.

Однако ряд эффектов глюкокортикоидов (например быстрое ингибирование глюкокортикоидами секреции АКТГ) развиваются очень быстро и не могут быть объяснены экспрессией генов (т.н. внегеномные эффекты глюкокортикоидов). Такие свойства могут быть опосредованы нетранскрипторными механизмами, либо взаимодействием с обнаруженными в некоторых клетках рецепторами глюкокортикоидов на плазматической мембране. Полагают также, что эффекты глюкокортикоидов могут реализовываться на разных уровнях в зависимости от дозы. Например, при низких концентрациях глюкокортикоидов (>10 -12 моль/л) проявляются геномные эффекты (для их развития требуется более 30 мин), при высоких — внегеномные.

Глюкортикоиды вызывают множество эффектов, т.к. оказывают влияние на большинство клеток организма.

Они обладают противовоспалительным, десенсибилизирующим, противоаллергическим и иммунодепрессивным действием, противошоковыми и антитоксическими свойствами.

Противовоспалительное действие глюкокортикоидов обусловлено многими факторами, ведущим из которых является подавление активности фосфолипазы А 2 . При этом глюкокортикоиды действуют опосредованно: они увеличивают экспрессию генов, кодирующих синтез липокортинов (аннексинов), индуцируют продукцию этих белков, один из которых — липомодулин — ингибирует активность фосфолипазы А 2 . Угнетение этого фермента приводит к подавлению либерации арахидоновой кислоты и торможению образования ряда медиаторов воспаления — простагландинов, лейкотриенов, тромбоксана, фактора активации тромбоцитов и др. Кроме того, глюкокортикоиды уменьшают экспрессию гена, кодирующего синтез ЦОГ-2 , дополнительно блокируя образование провоспалительных простагландинов.

Кроме того, глюкокортикоиды улучшают микроциркуляцию в очаге воспаления, вызывают вазоконстрикцию капилляров, уменьшают экссудацию жидкости. Глюкокортикоиды стабилизируют клеточные мембраны, в т.ч. мембраны лизосом, предотвращая выход лизосомальных ферментов и снижая тем самым их концентрацию в месте воспаления.

Таким образом, глюкокортикоиды влияют на альтеративную и экссудативную фазы воспаления, препятствуют распространению воспалительного процесса.

Ограничение миграции моноцитов в очаг воспаления и торможение пролиферации фибробластов обусловливают антипролиферативное действие. Глюкокортикоиды подавляют образование мукополисахаридов, ограничивая тем самым связывание воды и белков плазмы в очаге ревматического воспаления. Угнетают активность коллагеназы, препятствуя деструкции хрящей и костей при ревматоидном артрите.

Противоаллергическое действие развивается в результате снижения синтеза и секреции медиаторов аллергии, торможения высвобождения из сенсибилизированных тучных клеток и базофилов гистамина и других биологически активных веществ, уменьшения числа циркулирующих базофилов, подавления пролиферации лимфоидной и соединительной ткани, уменьшения количества Т- и B-лимфоцитов, тучных клеток, снижения чувствительности эффекторных клеток к медиаторам аллергии, угнетения антителообразования, изменения иммунного ответа организма.

Характерной особенностью глюкокортикоидов является иммунодепрессивная активность. В отличие от цитостатиков, иммунодепрессивные свойства глюкокортикоидов не связаны с митостатическим действием, а являются результатом подавления разных этапов иммунной реакции: торможения миграции стволовых клеток костного мозга и В-лимфоцитов, подавления активности Т- и B-лимфоцитов, а также угнетения высвобождения цитокинов (ИЛ-1, ИЛ-2, интерферона-гамма) из лейкоцитов и макрофагов. Кроме того, глюкокортикоиды снижают образование и увеличивают распад компонентов системы комплемента, блокируют Fc-рецепторы иммуноглобулинов, подавляют функции лейкоцитов и макрофагов.

Противошоковое и антитоксическое действие глюкокортикоидов связано с повышением АД (за счет увеличения количества циркулирующих катехоламинов, восстановления чувствительности адренорецепторов к катехоламинам и вазоконстрикции), активацией ферментов печени, участвующих в метаболизме эндо- и ксенобиотиков.

Глюкокортикоиды оказывают выраженное влияние на все виды обмена: углеводный, белковый, жировой и минеральный. Со стороны углеводного обмена это проявляется тем, что они стимулируют глюконеогенез в печени, повышают содержание глюкозы в крови (возможна глюкозурия), способствуют накоплению гликогена в печени. Влияние на белковый обмен выражается в угнетении синтеза и ускорении катаболизма белков, особенно в коже, в мышечной и костной ткани. Это проявляется мышечной слабостью, атрофией кожи и мышц, замедлением заживления ран. Эти ЛС вызывают перераспределение жира: повышают липолиз в тканях конечностей, способствуют накоплению жира преимущественно в области лица (лунообразное лицо), плечевого пояса, живота.

Глюкокортикоиды обладают минералокортикоидной активностью: задерживают в организме натрий и воду за счет увеличения реабсорбции в почечных канальцах, стимулируют выведение калия. Эти эффекты более характерны для природных глюкокортикоидов (кортизон, гидрокортизон), в меньшей степени — для полусинтетических (преднизон, преднизолон, метилпреднизолон). Преобладает минералокортикоидная активность у флудрокортизона. У фторированных глюкокортикоидов (триамцинолон, дексаметазон, бетаметазон) минералокортикоидная активность практически отсутствует.

Глюкокортикоиды снижают всасывание кальция в кишечнике, способствуют его выходу из костей и повышают выведение кальция почками, в результате чего возможно развитие гипокальциемии, гиперкальциурии, глюкокортикоидного остеопороза.

После приема даже одной дозы глюкокортикоидов отмечают изменения со стороны крови: снижение количества лимфоцитов, моноцитов, эозинофилов, базофилов в периферической крови с одновременным развитием нейтрофильного лейкоцитоза, повышением содержания эритроцитов.

При длительном применении глюкокортикоиды подавляют функцию системы гипоталамус — гипофиз — надпочечники.

Глюкокортикоиды различаются по активности, фармакокинетическим параметрам (степень всасывания, T 1/2 и др.), способам применения.

Системные глюкокортикоиды можно разделить на несколько групп.

По происхождению они подразделяются на:

Природные (гидрокортизон, кортизон);

Синтетические (преднизолон, метилпреднизолон, преднизон, триамцинолон, дексаметазон, бетаметазон).

По длительности действия глюкокортикоиды для системного применения можно разделить на три группы (в скобках — биологический (из тканей) период полувыведения (T 1/2 биол.):

Глюкокортикоиды короткого действия (T 1/2 биол. — 8-12 ч): гидрокортизон, кортизон;

Глюкокортикоиды средней продолжительности действия (T 1/2 биол. — 18-36 ч): преднизолон, преднизон, метилпреднизолон;

Глюкокортикоиды длительного действия (T 1/2 биол. — 36-54 ч): триамцинолон, дексаметазон, бетаметазон.

Продолжительность действия глюкокортикоидов зависит от пути/места введения, растворимости лекарственной формы (мазипредон — водорастворимая форма преднизолона), вводимой дозы. После приема внутрь или в/в введения продолжительность действия зависит от T 1/2 биол., при в/м введении — от растворимости лекарственной формы и T 1/2 биол., после локальных инъекций — от растворимости лекарственной формы и специфического пути/места введения.

При приеме внутрь глюкокортикоиды быстро и почти полностью всасываются из ЖКТ . С max в крови отмечается через 0,5-1,5 ч. Глюкокортикоиды связываются в крови с транскортином (кортикостероидсвязывающий альфа 1 -глобулин) и альбумином, причем природные глюкокортикоиды связываются с белками на 90-97%, синтетические — на 40-60%. Глюкокортикоиды хорошо проникают через гистогематические барьеры, в т.ч. через ГЭБ , проходят через плаценту. Фторированные производные (в т.ч. дексаметазон, бетаметазон, триамцинолон) через гистогематические барьеры проходят хуже. Глюкокортикоиды подвергаются биотрансформации в печени с образованием неактивных метаболитов (глюкуронидов или сульфатов), которые выводятся преимущественно почками. Природные препараты метаболизируются быстрее, чем синтетические, и имеют менее длительный период полувыведения.

Современные глюкокортикоиды представляют собой группу средств, широко применяющихся в клинической практике, в т.ч. в ревматологии, пульмонологии, эндокринологии, дерматологии, офтальмологии, оториноларингологии.

Основными показаниями к применению глюкокортикоидов являются коллагенозы, ревматизм, ревматоидный артрит, бронхиальная астма, острый лимфобластный и миелобластный лейкоз, инфекционный мононуклеоз, экзема и другие кожные болезни, различные аллергические заболевания. Для терапии атопических, аутоиммунных заболеваний глюкокортикоиды являются базовыми патогенетическими средствами. Применяют глюкокортикоиды также при гемолитической анемии, гломерулонефрите, остром панкреатите, вирусном гепатите и заболеваниях органов дыхания (ХОБЛ в фазе обострения, острый респираторный дистресс-синдром и др.). В связи с противошоковым эффектом глюкокортикоиды назначают для профилактики и лечения шока (посттравматического, операционного, токсического, анафилактического, ожогового, кардиогенного и др.).

Иммунодепрессивное действие глюкокортикоидов позволяет использовать их при трансплантации органов и тканей для подавления реакции отторжения, а также при различных аутоиммунных заболеваниях.

Главный принцип глюкокортикоидной терапии — достижение максимального лечебного эффекта при минимальных дозах. Режим дозирования подбирают строго индивидуально, в большей степени в зависимости от характера заболевания, состояния больного и реакции на проводимое лечение, чем от возраста или массы тела.

При назначении глюкокортикоидов необходимо учитывать их эквивалентные дозы: по противовоспалительному эффекту 5 мг преднизолона соответствуют 25 мг кортизона, 20 мг гидрокортизона, 4 мг метилпреднизолона, 4 мг триамцинолона, 0,75 мг дексаметазона, 0,75 мг бетаметазона.

Различают 3 вида глюкокортикоидной терапии: заместительная, супрессивная, фармакодинамическая.

Заместительная терапия глюкокортикоидами необходима при надпочечниковой недостаточности. При этом виде терапии используют физиологические дозы глюкокортикоидов, при стрессовых ситуациях (например хирургическая операция, травма, острое заболевание) дозы увеличивают в 2-5 раз. При назначении следует учитывать суточный циркадный ритм эндогенной секреции глюкокортикоидов: в 6-8 ч утра назначают бóльшую (или всю) часть дозы. При хронической недостаточности коры надпочечников (болезнь Аддисона) глюкокортикоиды могут применяться в течение всей жизни.

Супрессивная терапия глюкокортикоидами применяется при адреногенитальном синдроме — врожденной дисфункции коры надпочечников у детей. При этом глюкокортикоиды используют в фармакологических (супрафизиологических) дозах, что приводит к подавлению секреции АКТГ гипофизом и последующему снижению повышенной секреции андрогенов надпочечниками. Бóльшую (2/3) часть дозы назначают на ночь, чтобы, по принципу отрицательной обратной связи, предотвратить пик выброса АКТГ .

Фармакодинамическая терапия используется наиболее часто, в т.ч. при лечении воспалительных и аллергических заболеваний.

Можно выделить несколько разновидностей фармакодинамической терапии: интенсивную, лимитирующую, долговременную.

Интенсивная фармакодинамическая терапия: применяют при острых, угрожающих жизни состояниях, глюкокортикоиды вводят в/в , начиная с больших доз (5 мг/кг — сутки); после выхода больного из острого состояния (1-2 дня) глюкокортикоиды отменяют сразу, одномоментно.

Лимитирующая фармакодинамическая терапия: назначают при подострых и хронических процессах, в т.ч. воспалительных (системная красная волчанка, системная склеродермия, ревматическая полимиалгия, бронхиальная астма тяжелого течения, гемолитическая анемия, острый лейкоз и др.). Длительность терапии составляет, как правило, несколько месяцев, глюкокортикоиды применяют в дозах, превышающих физиологические (2-5 мг/кг/сут), с учетом циркадного ритма.

Для уменьшения угнетающего влияния глюкокортикоидов на гипоталамо-гипофизарно-надпочечниковую систему предложены разные схемы прерывистого назначения глюкокортикоидов:

- альтернирующая терапия — используют глюкокортикоиды короткой/средней продолжительности действия (преднизолон, метилпреднизолон), однократно, утром (около 8 ч), каждые 48 ч;

- интермиттирующая схема — глюкокортикоиды назначают короткими курсами (3-4 дня) с 4-дневными перерывами между курсами;

- пульс-терапия — быстрое в/в введение большой дозы препарата (не менее 1 г) — для неотложной терапии. Препарат выбора для пульс-терапии — метилпреднизолон (лучше других поступает в воспаленные ткани и реже вызывает побочные эффекты).

Долговременная фармакодинамическая терапия: применяют при лечении заболеваний с хроническим течением. Глюкокортикоиды назначают внутрь, дозы превосходят физиологические (2,5-10 мг/сут), терапию назначают в течение нескольких лет, отмена глюкокортикоидов при этом виде терапии проводится очень медленно.

Дексаметазон и бетаметазон не применяют для длительной терапии, поскольку при самом сильном и длительном, по сравнению с другими глюкокортикоидами, противовоспалительным действии они вызывают и самые выраженные побочные эффекты, в т.ч. угнетающее действие на лимфоидную ткань и кортикотропную функцию гипофиза.

Во время лечения возможен переход от одного вида терапии к другому.

Глюкокортикоиды применяют внутрь, парентерально, интра- и периартикулярно, ингаляционно, интраназально, ретро- и парабульбарно, в виде глазных и ушных капель, наружно в виде мазей, кремов, лосьонов и др.

Например, при ревматических заболеваниях глюкокортикоиды применяют для системной, местной или локальной (интраартикулярно, периартикулярно, наружно) терапии. При бронхообструктивных заболеваниях особо важное значение имеют ингаляционные глюкокортикоиды.

Глюкокортикоиды являются эффективными терапевтическими средствами во многих случаях. Необходимо, однако, учитывать, что они могут вызывать ряд побочных эффектов, в том числе симптомокомплекс Иценко-Кушинга (задержка натрия и воды в организме с возможным появлением отеков, потеря калия, повышение АД), гипергликемию вплоть до сахарного диабета (стероидный диабет), замедление процессов регенерации тканей, обострение язвенной болезни желудка и двенадцатиперстной кишки, изъязвление пищеварительного тракта, прободение нераспознанной язвы, геморрагический панкреатит, понижение сопротивляемости организма к инфекциям, гиперкоагуляцию с риском тромбоза, появление угрей, лунообразного лица, ожирения, нарушения менструального цикла и др. При приеме глюкокортикоидов отмечается усиленное выведение кальция и остеопороз (при длительном приеме глюкокортикоидов в дозах более 7,5 мг/сут — в эквиваленте по преднизолону — возможно развитие остеопороза длинных трубчатых костей). Профилактику стероидного остеопороза осуществляют препаратами кальция и витамина D с момента начала приема глюкокортикоидов. Наиболее выраженные изменения в костно-мышечной системе отмечаются в первые 6 мес лечения. Одним из опасных осложнений является асептический некроз костей, поэтому необходимо предупреждать пациентов о возможности его развития и при появлении «новых» болей, особенно в плечевом, тазобедренном и коленном суставах, необходимо исключать асептический некроз кости. Глюкокортикоиды вызывают изменения со стороны крови: лимфопения, моноцитопения, эозинопения, снижение количества базофилов в периферической крови, развитие нейтрофильного лейкоцитоза, повышение содержания эритроцитов. Возможны также нервные и психические расстройства: инсомния, возбуждение (с развитием в некоторых случаях психоза), эпилептиформные судороги, эйфория.

При длительном применении глюкокортикоидов следует учитывать вероятное угнетение функции коры надпочечников (не исключена атрофия) с подавлением биосинтеза гормонов. Введение кортикотропина одновременно с глюкокортикоидами предотвращает атрофию надпочечников.

Частота и сила побочных явлений, вызываемых глюкокортикоидами, могут быть выражены в разной степени. Побочные эффекты, как правило, являются проявлением собственно глюкокортикоидного действия этих ЛС , но в степени, превышающей физиологическую норму. При правильном подборе дозы, соблюдении необходимых мер предосторожности, постоянном наблюдении за ходом лечения частоту развития побочных явлений можно значительно снизить.

Для предупреждения нежелательных эффектов, связанных с применением глюкокортикоидов, следует, особенно при длительном лечении, тщательно наблюдать за динамикой роста и развития у детей, периодически проводить офтальмологическое обследование (для выявления глаукомы, катаракты и др.), регулярно контролировать функцию гипоталамо-гипофизарно-адреналовой системы, содержание глюкозы в крови и моче (особенно у больных сахарным диабетом), проводить контроль АД , ЭКГ , электролитного состава крови, контроль за состоянием ЖКТ , костно-мышечной системы, контроль за развитием инфекционных осложнений и др.

Большинство осложнений при лечении глюкокортикоидами поддаются лечению и проходят после отмены ЛС . К необратимым побочным эффектам глюкокортикоидов относят задержку роста у детей (возникает при лечении глюкокортикоидами в течение более 1,5 лет), субкапсулярную катаракту (развивается при наличии семейной предрасположенности), стероидный диабет.

Резкая отмена глюкокортикоидов может вызвать обострение процесса — синдром отмены, особенно при прекращении длительной терапии. В связи с этим, лечение должно заканчиваться постепенным уменьшением дозы. Тяжесть синдрома отмены зависит от степени сохранности функции коры надпочечников. В легких случаях синдром отмены проявляется повышением температуры тела, миалгией, артралгией, недомоганием. В тяжелых случаях, особенно при сильном стрессе, может развиться аддисонический криз (сопровождающийся рвотой, коллапсом, судорогами).

В связи с побочными эффектами глюкокортикоиды применяются только при наличии четких показаний и под тщательным врачебным контролем. Противопоказания для назначения глюкокортикоидов являются относительными. В неотложных ситуациях единственным противопоказанием для кратковременного системного применения глюкокортикоидов является гиперчувствительность. В остальных случаях при планировании длительной терапии противопоказания должны приниматься во внимание.

Терапевтические и токсические эффекты глюкокортикоидов снижают — индукторы микросомальных ферментов печени, усиливают — эстрогены и пероральные противозачаточные средства. Гликозиды наперстянки, диуретики (вызывающие дефицит калия), амфотерицин B, ингибиторы карбоангидразы повышают вероятность аритмий и гипокалиемии. Алкоголь и НПВС повышают риск эрозивно-язвенных поражений или кровотечений в ЖКТ . Иммунодепрессанты увеличивают вероятность развития инфекций. Глюкокортикоиды ослабляют гипогликемическую активность противодиабетических средств и инсулина, натрийуретическую и диуретическую — мочегонных, антикоагулянтную и фибринолитическую — производных кумарина и индандиона, гепарина, стрептокиназы и урокиназы, активность вакцин (из-за снижения выработки антител), снижают концентрацию в крови салицилатов, мексилетина. При применении преднизолона и парацетамола повышается риск гепатотоксичности.

Известны пять ЛС , подавляющих секрецию кортикостероидов корой надпочечников (ингибиторы синтеза и действия кортикостероидов) : митотан, метирапон, аминоглутетимид, кетоконазол, трилостан. Аминоглутетимид, метирапон и кетоконазол подавляют синтез стероидных гормонов вследствие ингибирования гидроксилаз (изоферменты цитохрома P450), принимающих участие в биосинтезе. Все три ЛС обладают специфичностью, т.к. действуют на разные гидроксилазы. Эти препараты могут вызвать острую надпочечниковую недостаточность, поэтому их следует применять в строго определенных дозах и при тщательном наблюдении за состоянием гипоталамо-гипофизарно-надпочечниковой системы пациента.

Аминоглутетимид ингибирует 20,22-десмолазу, катализирующую начальную (лимитирующую) стадию стероидогенеза — превращение холестерина в прегненолон. В результате нарушается продукция всех стероидных гормонов. Кроме того, аминоглутетимид ингибирует 11-бета-гидроксилазу, а также ароматазу. Аминоглутетимид применяют при синдроме Кушинга, вызванном нерегулируемой избыточной секрецией кортизола опухолями коры надпочечников или эктопической продукцией АКТГ . Способность аминоглутетимида ингибировать ароматазу используют при лечении таких гормонально-зависимых опухолей, как рак предстательной железы, рак молочной железы.

Кетоконазол применяется в основном как противогрибковое средство. Однако в более высоких дозах он ингибирует несколько ферментов цитохрома Р450, вовлеченных в стероидогенез, в т.ч. 17-альфа-гидроксилазу, а также 20,22-десмолазу и блокирует, таким образом, стероидогенез во всех тканях. Согласно некоторым данным, кетоконазол является наиболее эффективным ингибитором стероидогенеза при болезни Кушинга. Однако целесообразность применения кетоконазола при избыточной продукции стероидных гормонов требует дальнейшего исследования.

Аминоглутетимид, кетоконазол и метирапон используются для диагностики и лечения гиперплазии надпочечников.

К антагонистам глюкокортикоидных рецепторов относится мифепристон. Мифепристон — антагонист прогестероновых рецепторов, в больших дозах блокирует глюкокортикоидные рецепторы, препятствует угнетению гипоталамо-гипофизарно-надпочечниковой системы (по механизму отрицательной обратной связи) и приводит к вторичному усилению секреции АКТГ и кортизола.

Одной из важнейших областей клинического применения глюкокортикоидов является патология различных отделов дыхательного тракта.

Показаниями для назначения системных глюкокортикоидов при заболеваниях органов дыхания являются бронхиальная астма, ХОБЛ в фазе обострения, пневмония тяжелого течения, интерстициальные болезни легких, острый респираторный дистресс-синдром.

После того, как в конце 40-х годов XX века были синтезированы глюкокортикоиды системного действия (пероральные и инъекционные формы), их сразу же стали применять для лечения тяжелой бронхиальной астмы. Несмотря на хороший терапевтический эффект, применение глюкокортикоидов при бронхиальной астме ограничивалось развитием осложнений — стероидного васкулита, системного остеопороза, сахарного диабета (стероидный диабет). Местные формы глюкокортикоидов стали применяться в клинической практике лишь спустя некоторое время — в 70-е гг. XX века. Публикация об успешном использовании первого топического глюкокортикоида — беклометазона (беклометазона дипропионат) — для лечения аллергического ринита относится к 1971 г. В 1972 г. появилось сообщение об использовании топической формы беклометазона для лечения бронхиальной астмы.

Ингаляционные глюкокортикоиды являются базисными препаратами при лечении всех патогенетических вариантов бронхиальной астмы персистирующего течения, применяются при ХОБЛ средней тяжести и тяжелого течения (со спирографически подтвержденным ответом на лечение).

К ингаляционным глюкокортикоидам относятся беклометазон, будесонид, флутиказон, мометазон, триамцинолон. Ингаляционные глюкокортикоиды отличаются от системных по фармакологическим свойствам: высокая аффинность к ГК-рецепторам (действуют в минимальных дозах), сильное местное противовоспалительное действие, низкая системная биодоступность (пероральная, легочная), быстрая инактивация, короткий T 1/2 из крови. Ингаляционные глюкокортикоиды угнетают все фазы воспаления в бронхах и снижают их повышенную реактивность. Очень важное значение имеет их способность понижать бронхиальную секрецию (уменьшать объем трахеобронхиального секрета) и потенцировать действие бета 2 -адреномиметиков. Применение ингаляционных форм глюкокортикоидов позволяет уменьшить потребность в таблетированных глюкокортикоидах. Важной характеристикой ингаляционных глюкокортикоидов является терапевтический индекс — соотношение местной противовоспалительной активности и системного действия. Из ингаляционных глюкокортикоидов наиболее благоприятный терапевтический индекс имеет будесонид.

Одним из факторов, определяющих эффективность и безопасность ингаляционных глюкокортикоидов, являются системы для их доставки в дыхательные пути. В настоящее время для этой цели используются дозированные и порошковые ингаляторы (турбухалер и др.), небулайзеры.

При правильном выборе системы и техники ингаляции системные побочные эффекты ингаляционных глюкокортикоидов незначительны ввиду низкой биодоступности и быстрой метаболической активации этих ЛС в печени. Следует иметь в виду, что все существующие ингаляционные глюкокортикоиды в той или иной степени всасываются в легких. Местные побочные эффекты ингаляционных глюкокортикоидов, особенно при длительном применении, заключаются в возникновении ротоглоточного кандидоза (у 5-25% больных), реже — кандидоза пищевода, дисфонии (у 30-58% больных), кашля.

Показано, что ингаляционные глюкокортикоиды и бета-адреномиметики длительного действия (салметерол, формотерол) обладают синергическим эффектом. Это обусловлено стимуляцией биосинтеза бета 2 -адренорецепторов и повышением их чувствительности к агонистам под влиянием глюкокортикоидов. В связи с этим при лечении бронхиальной астмы эффективными являются комбинированные препараты, предназначенные для длительной терапии, но не для купирования приступов — например фиксированная комбинация салметерол/флутиказон или формотерол/будесонид.

Ингаляции глюкокортикоидами противопоказаны при грибковых поражениях дыхательных путей, туберкулезе, беременности.

В настоящее время для интраназального применения в клинической практике используют беклометазона дипропионат, будесонид, флутиказон, мометазона фуроат. Кроме того, лекарственные формы в виде назальных аэрозолей существуют для флунизолида и триамцинолона, но в России они сейчас не применяются.

Назальные формы глюкокортикоидов эффективны при лечении неинфекционных воспалительных процессов в полости носа, рините, в т.ч. медикаментозном, профессиональном, сезонном (интермиттирующем) и круглогодичном (персистирующем) аллергическом рините, для предотвращения рецидива образования полипов в полости носа после их удаления. Топические глюкокортикоиды характеризуются относительно поздним началом действия (12-24 ч), медленным развитием эффекта — проявляется к 3-му дню, достигает максимума на 5-7-й день, иногда — через несколько недель. Наиболее быстро начинает действовать мометазон (12 ч).

Современные интраназальные глюкокортикоиды хорошо переносятся, при применении в рекомендуемых дозах системные (часть дозы всасывается со слизистой оболочки полости носа и попадает в системный кровоток) эффекты минимальны. Среди местных побочных эффектов у 2-10% пациентов в начале лечения отмечаются носовые кровотечения, сухость и жжение в носу, чиханье и зуд. Возможно, эти побочные эффекты являются следствием раздражающего действия пропеллента. Описаны единичные случаи перфорации носовой перегородки при применении интраназальных глюкокортикоидов.

Интраназальное применение глюкокортикоидов противопоказано при геморрагическом диатезе, а также при повторных носовых кровотечениях в анамнезе.

Таким образом, глюкокортикоиды (системные, ингаляционные, назальные) получили широкое применение в пульмонологии и оториноларингологии. Это обусловлено способностью глюкокортикоидов купировать основные симптомы заболеваний лор-органов и органов дыхания, а при персистирующем течении процесса — существенно пролонгировать межприступный период. Очевидное преимущество применения топических лекарственных форм глюкокортикоидов заключается в возможности минимизировать системные побочные эффекты, повысив, таким образом, эффективность и безопасность терапии.

В 1952 г. Sulzberger и Witten впервые сообщили об успешном применении 2,5% гидрокортизоновой мази для наружного лечения кожного дерматоза. Природный гидрокортизон — исторически первый глюкокортикоид, примененный в дерматологической практике, впоследствии он стал стандартом для сравнения силы разных глюкокортикоидов. Гидрокортизон, однако, недостаточно эффективен, особенно при тяжелых дерматозах, вследствие относительно слабого связывания со стероидными рецепторами клеток кожи и медленного проникновения через эпидермис.

Позже глюкокортикоиды нашли широкое применение в дерматологии для лечения различных заболеваний кожи неинфекционной природы: атопический дерматит, псориаз, экзема, красный плоский лишай и другие дерматозы. Они оказывают местное противовоспалительное, противоаллергическое действие, устраняют зуд (применение при зуде обосновано только в случае, если он вызван воспалительным процессом).

Топические глюкокортикоиды отличаются друг от друга по химической структуре, а также по силе местного противовоспалительного действия.

Создание галогенированных соединений (включение в молекулу галогенов — фтора или хлора) позволило увеличить противовоспалительный эффект и уменьшить системное побочное действие при местном применении вследствие меньшей абсорбции ЛС . Наиболее низкой всасываемостью при аппликации на кожу отличаются соединения, содержащие в своей структуре два атома фтора — флуметазон, флуоцинолона ацетонид и др.

Согласно Европейской классификации (Niedner, Schopf, 1993) по потенциальной активности местных стероидов выделяют 4 класса:

Слабые (класс I) — гидрокортизон 0,1-1%, преднизолон 0,5%, флуоцинолона ацетонид 0,0025%;

Средней силы (класс II) — алклометазон 0,05%, бетаметазона валерат 0,025%, триамцинолона ацетонид 0,02%, 0,05%, флуоцинолона ацетонид 0,00625% и др.;

Сильные (класс III) — бетаметазона валерат 0,1%, бетаметазона дипропионат 0,025%, 0,05%, гидрокортизона бутират 0,1%, метилпреднизолона ацепонат 0,1%, мометазона фуроат 0,1%, триамцинолона ацетонид 0,025%, 0,1%, флутиказон 0,05%, флуоцинолона ацетонид 0,025% и др.

Очень сильные (класс III) — клобетазола пропионат 0,05% и др.

Наряду с повышением терапевтического действия при использовании фторированных глюкокортикоидов увеличивается и частота развития побочных явлений. Наиболее частыми среди местных побочных явлений при применении сильных глюкокортикоидов являются атрофия кожи, телеангиэктазии, стероидные акне, стрии, инфекции кожи. Вероятность развития как местных, так и системных побочных эффектов возрастает при нанесении на обширные поверхности и длительном использовании глюкокортикоидов. Из-за развития побочных эффектов применение фторсодержащих глюкокортикоидов ограничено при необходимости длительного использования, а также в педиатрической практике.

В последние годы путем модификации молекулы стероида получены местные глюкокортикоиды нового поколения, которые не содержат атомов фтора, но при этом характеризуются высокой эффективностью и хорошим профилем безопасности (например мометазон в виде фуроата — синтетический стероид, который начал выпускаться с 1987 г. в США, метилпреднизолона ацепонат, который применяется в практике с 1994 г.).

Терапевтический эффект топических глюкокортикоидов зависит также от применяемой лекарственной формы. Глюкокортикоиды для местного применения в дерматологии выпускаются в форме мазей, кремов, гелей, эмульсий, лосьонов и др. Способность к проникновению в кожу (глубина проникновения) убывает в следующем порядке: жирная мазь>мазь>крем>лосьон (эмульсия). При хронической сухости кожи проникновение глюкокортикоидов в эпидермис и дерму затруднено, поэтому при дерматозах, сопровождающихся повышенной сухостью и шелушением кожи, лихенизацией целесообразнее применять мази, т.к. увлажнение рогового слоя эпидермиса мазевой основой в несколько раз увеличивает проникновение ЛС в кожу. При острых процессах с выраженным мокнутием целесообразнее назначать лосьоны, эмульсии.

Поскольку глюкокортикоиды для местного применения снижают сопротивляемость кожи и слизистых оболочек, что может привести к развитию суперинфекции, при вторичном инфицировании целесообразно сочетание в одной лекарственной форме глюкокортикоида с антибиотиком, например крем и мазь Дипрогент (бетаметазон + гентамицин), аэрозоли Оксикорт (гидрокортизон + окситетрациклин) и Полькортолон ТС (триамцинолон + тетрациклин) и др. , или с антибактериальным и противогрибковым средством, например Акридерм ГК (бетаметазон + клотримазол + гентамицин).

Топические глюкокортикоиды применяют при лечении таких осложнений хронической венозной недостаточности (ХВН), как трофические нарушения кожи, варикозная экзема, гемосидероз, контактный дерматит и др. Их использование обусловлено подавлением воспалительных и токсико-аллергических реакций в мягких тканях, возникающих при тяжелых формах ХВН. В отдельных случаях местные глюкокортикоиды используют для подавления сосудистых реакций, возникающих во время флебосклерозирующего лечения. Наиболее часто для этого используются мази и гели, содержащие гидрокортизон, преднизолон, бетаметазон, триамцинолон, флуоцинолона ацетонид, мометазона фуроат и др.

Применение глюкокортикоидов в офтальмологии основано на их местном противовоспалительном, противоаллергическом, противозудном действии. Показаниями к назначению глюкокортикоидов являются воспалительные заболевания глаза неинфекционной этиологии, в т.ч. после травм и операций — ирит, иридоциклит, склерит, кератит, увеит и др. С этой целью используются: гидрокортизон, бетаметазон, дезонид, триамцинолон и др. Наиболее предпочтительно применение местных форм (глазные капли или суспензия, мази), в тяжелых случаях — субъконъюнктивальные инъекции. При системном (парентерально, внутрь) использовании глюкокортикоидов в офтальмологии следует помнить о высокой вероятности (75%) развития стероидной катаракты при ежедневном использовании в течение нескольких месяцев преднизолона в дозе более 15 мг (а также эквивалентных доз других препаратов), при этом риск возрастает с увеличением длительности лечения.

Глюкокортикоиды противопоказаны при острых инфекционных заболеваниях глаз. При необходимости, например при бактериальных инфекциях, используют комбинированные препараты, содержащие в своем составе антибиотики, такие как капли глазные/ушные Гаразон (бетаметазон + гентамицин) или Софрадекс (дексаметазон + фрамицетин + грамицидин) и др. Комбинированные препараты, в состав которых входят ГК и антибиотики, широко используются в офтальмологической и оториноларингологической практике. В офтальмологии — для лечения воспалительных и аллергических заболеваний глаз при наличии сопутствующей или подозреваемой бактериальной инфекции, например при некоторых видах конъюнктивита, в послеоперационном периоде. В оториноларингологии — при наружном отите; рините, осложненном вторичной инфекцией и пр. Следует иметь в виду, что один и тот же флакон препарата не рекомендуется использовать для лечения отита, ринита и заболеваний глаз во избежание распространения инфекции.

Препараты

Препаратов - 2564 ; Торговых названий - 209 ; Действующих веществ - 27

Действующее вещество Торговые названия
Информация отсутствует




















































































Современные лекарственные средства для детей Тамара Владимировна Парийская

Ингаляционные глюкокортикоиды

Ингаляционные глюкокортикоиды

Глюкокортикоидные гормоны, применяемые в виде ингаляций, оказывают в основном местное действие, уменьшают или устраняют спазм бронхов, способствуют уменьшению отека и воспаления дыхательных путей. Применяются они при бронхиальной астме, астматическом, обструктивном бронхите наряду с другими ингаляционными бронхоспазмолитическими препаратами (вентолин, саламол, беротек и др.).

В настоящее время существуют три типа ингаляционных систем:

1. Дозированный ингалятор (МДУ) и МДУ со спейсером.

2. Порошковый ингалятор (ДРУ).

3. Небулайзер.

В небулайзере жидкость превращается в «туман» (аэрозоль) под воздействием сжатого воздуха (компрессионный небулайзер) или ультразвука (ультразвуковой небулайзер). При использовании небулайзера лекарство хорошо проникает в нижние отделы дыхательных путей и действует более эффективно. В небулайзерах применяются те же вещества, что и в других ингаляторах, но лекарства для небулайзеров выпускаются в специальных флаконах с капельницей или в пластиковых ампулах.

При назначении препаратов в виде ингаляций детям старше 3 лет мундштук ингалятора должен находиться на расстоянии 2–4 см от широко раскрытого рта. Нажатие на клапан производят во время глубокого вдоха, выдох делается через 10–20 секунд. Длительность ингаляции 5 минут. Минимальный интервал между ингаляциями – 4 часа. Длительность применения ингаляционных кортикостероидов в полной дозе в среднем составляет 3–4 недели, поддерживающая доза назначается на несколько месяцев (до 6 месяцев и более).

В справочнике представлены следующие ингаляционные глюкокортикоиды:

Альдецин Син.: Арумет; Беклазон; Беклат; Беклометазона дипропионат; Бекодиск; Беконазе; Бекотид; Плибекот 93

Беклазон 93, 135

Бекломет 137

Беконазе 93, 138

Пульмикорт 369

Фликсотид Син.: Кутивейт; Фликсоназе; Флутиказон 462

Данный текст является ознакомительным фрагментом.

Ингаляционные кортикостероиды рекомендуются с профилактической целью у больных с бронхиальной астмой персистирующего течения, начиная с легкой степени тяжести. Ингаляционные стероиды практически не имеют системных эффектов по сравнению с системными стероидами, однако высокие дозы ингаляционных стероидов следует с осторожностью использовать у больных, входящих в группу риска по развитию глаукомы и катаракты.

У меренные дозы ингаляционных кортикостероидов I и II поколения не вызывают супрессию коры надпочечников, а также не влияют на метаболизм костной ткани, однако при назначении их детям рекомендуется контролировать рост ребенка. Препараты III поколения можно назначать детям с возраста 1 год именно потому, что они обладают минимальным коэффициентом системной биодоступности. С целью достижения устойчивого эффекта ингаляционные формы кортикостероидов должны использоваться регулярно. Уменьшение симптомов астмы обычно достигается к 3-7-му дню терапии. При необходимости одновременного назначении |1г-агонистов и ингаляционных стероидов для лучшего проникновения последних в воздухоносные пути , поступая в дыхательные пути и быстро абсорбируясь, попадает в системный кровоток. Более того, эта часть дозы может вызывать внелегочные системные НЭ, особенно при назначении высоких доз ИГКС, причем здесь немаловажное значение отводится типу используемого ингалятора с ИГКС, так как при вдыхании сухой пудры будесонида через турбухалер легочное отложение препарата увеличивается в 2 раза и более по сравнению с ингаляцией из дозированных аэрозолей .

Таким образом, высокий процент отложения препарата во внутрилегочных дыхательных путях в норме дает лучший терапевтический индекс для тех ИГКС, которые имеют низкую системную биодоступность при оральном пути введения. Это относится, например, к БДП, имеющему системную биодоступность за счет кишечной абсорбции, в отличие от будесонида, обладающего системной биодоступностью преимущественно за счет легочной абсорбции .

Для ИГКС с нулевой биодоступностью после пероральной дозы (флютиказон), характер устройства и техника проведения ингаляции определяют только эффективность лечения, но не влияют на терапевтический индекс .

Поэтому при оценке системной биодоступности необходимо учитывать общую биодоступность, то есть не только низкую оральную (почти нулевую у флютиказона и 6—13% у будесонида), но и ингаляционную биодоступность, средние величины которых колеблются в пределах от 20 (ФП) до 39% (флунизолид) () .

Для ИГКС с высокой фракцией ингаляционной биодоступности (будесонид, ФП, БДП) системная биодоступность может возрастать при наличии воспалительных процессов в слизистой бронхиального дерева. Это было установлено при сравнительном исследовании системных эффектов по уровню снижения кортизола в плазме крови после однократного назначения будесонида и БДП в дозе 2 мг в 22 ч здоровым курящим и некурящим лицам . Следует отметить, что после ингаляции будесонида уровень кортизола у курящих был на 28% ниже, чем у некурящих.

Это позволило сделать вывод о том, что при наличии воспалительных процессов в слизистой дыхательных путей при астме и хроническом обструктивном бронхите может измениться системная биодоступность тех ИГКС, которые имеют легочную абсорбцию (в данном исследовании это будесонид, но не БДП, имеющий кишечную абсорбцию).

Большой интерес вызывает мометазона фуроат (МФ), новый ИГКС с очень высокой противовоспалительной активностью, у которого отсутствует биодоступность. Существует несколько версий, объясняющих этот феномен. Согласно первой из них, 1 МФ из легких не сразу попадает в системный кровоток, подобно будесониду, длительно задерживающемуся в дыхательных путях из-за образования липофильных конъюгатов с жирными кислотами. Это объясняется тем, что МФ имеет высоколипофильную группу фуроат в позиции С17 молекулы препарата, в связи с чем он поступает в системный кровоток медленно и в количествах, недостаточных для определения. Согласно второй версии, МФ быстро метаболизируется в печени. Третья версия гласит: агломераты лактоза-МФ обусловливают низкую биодоступность из-за снижения степени растворимости. Согласно четвертой версии, МФ быстро метаболизируется в легких и потому при ингаляции не достигает системной циркуляции. И наконец, предположение, что МФ не поступает в легкие, не находит подтверждения, так как имеются данные о высокой эффективности МФ в дозе 400 мкг у больных с астмой. Поэтому первые три версии могут в какой-то степени объяснять факт отсутствия биоступности у МФ, однако этот вопрос требует дальнейшего изучения .

Таким образом, системная биодоступность ИГКС представляет собой сумму ингаляционной и оральной биодоступности. У флунизолида и беклометазона дипропионата системная биодоступность составляет примерно 60 и 62% соответственно, что несколько превышает сумму оральной и ингаляционной биодоступности других ИГКС.

В последнее время был предложен новый препарат ИГКС — циклезонид, оральная биодоступность которого практически равна нулю . Это объясняется тем, что циклезонид является пролекарством, его афинность по отношению к ГКС-рецепторам почти в 8,5 раза ниже, чем у дексаметазона. Однако, попадая в легкие, молекула препарата подвергается действию ферментов (эстераз) и переходит в свою активную форму (афинность активной формы препарата в 12 раз выше, чем у дексаметазона). В связи с этим циклезонид лишен целого ряда нежелательных побочных реакций, связанных с попаданием ИГКС в системный кровоток.

Связь с белками плазмы крови

ИГКС имеют довольно высокую связь с белками плазмы крови (); у будесонида и флютиказона эта связь несколько выше (88 и 90%) по сравнению с флунизолидом и триамцинолоном — 80 и 71% соответственно. Обычно для проявления фармакологической активности лекарственных средств большое значение имеет уровень свободной фракции препарата в плазме крови. У современных более активных ИГКС — будесонида и ФП она составляет 12 и 10% соответственно, что несколько ниже, чем у флунизолида и ТАА — 20 и 29%. Эти данные могут свидетельствовать о том, что в проявлении активности будесонида и ФП, кроме уровня свободной фракции препаратов, большую роль играют и другие фармакокинетические свойства препаратов .

Объем распределения

Объем распределения (Vd) ИГКС указывает на степень внелегочного тканевого распределения препарата. Большой Vd свидетельствует о том, что более значительная часть препарата распределяется в периферических тканях. Однако большой Vd не может служить показателем высокой системной фармакологической активности ИГКС, так как последняя зависит от количества свободной фракции препарата, способной вступать в связь с ГКР. На уровне равновесной концентрации наибольший Vd, во много раз превышающий этот показатель у других ИГКС, выявлен у ФП (12,1 л/кг) (); в данном случае это может указывать на высокую липофильность ФП.

Липофильность

Фармакокинетические свойства ИГКС на уровне тканей преимущественно определяются их липофильностью, являющейся ключевым компонентом для проявления селективности и времени задержки препарата в тканях. Липофильность увеличивает концентрацию ИГКС в дыхательных путях, замедляет их высвобождение из тканей, увеличивает сродство и удлиняет связь с ГКР, хотя до сих пор не определена грань оптимальной липофильности ИГКС .

В наибольшей степени липофильность проявляется у ФП, далее у БДП, будесонида, а ТАА и флунизолид являются водорастворимыми препаратами . Высоколипофильные препараты — ФП, будесонид и БДП — быстрее абсорбируются из респираторного тракта и дольше задерживаются в тканях дыхательных путей по сравнению с неингаляционными ГКС — гидрокортизоном и дексаметазоном, назначаемыми ингаляционно. Этим фактом, возможно, и объясняется относительно неудовлетворительная антиастматическая активность и селективность последних . О высокой селективности будесонида свидетельствует тот факт, что его концентрация в дыхательных путях через 1,5 ч после ингаляции 1,6 мг препарата оказывается в 8 раз выше, чем в плазме крови, и это соотношение сохраняется на протяжении 1,5—4 ч после ингаляции . Другое исследование выявило большое распределение ФП в легких, так как через 6,5 ч после приема 1 мг препарата обнаруживалась высокая концентрация ФП в ткани легких и низкая в плазме, в отношении от 70:1 до 165:1.

Поэтому логично предположить, что более липофильные ИГКС могут откладываться на слизистой дыхательных путей в виде «микродепо» препаратов, что позволяет продлить их местный противовоспалительный эффект, так как для растворения кристаллов БДП и ФП в бронхиальной слизи требуется более 5—8 ч, тогда как для будесонида и флунизолида, имеющих быструю растворимость, этот показатель составляет 6 мин и менее 2 мин соответственно . Было показано, что водорастворимость кристаллов, обеспечивающая растворимость ГКС в бронхиальной слизи, является важным свойством в проявлении местной активности ИГКС .

Другим ключевым компонентом для проявления противовоспалительной активности ИГКС является способность препаратов задерживаться в тканях дыхательных путей. В исследованиях in vitro, проведенных на препаратах легочной ткани, показано, что способность ИГКС задерживаться в тканях довольно тесно коррелирует с липофильностью. У ФП и беклометазона она выше, чем у будесонида, флунизолида и гидрокортизона . В то же время в исследованиях in vivo показано, что на слизистой трахеи крыс будесонид и ФП задерживались дольше по сравнению с БДП , причем будесонид задерживался дольше, чем ФП . В первые 2 ч после интубации будесонидом, ФП, БДП и гидрокортизоном высвобождение радиоактивной метки (Ra-метки) из трахеи у будесонида было замедленным и составляло 40% против 80% у ФП и БДП и 100% у гидрокортизона. В последующие 6 ч наблюдалось дальнейшее увеличение высвобождения будесонида на 25% и БДП на 15%, в то время как у ФП дальнейшего увеличения высвобождения Ra-метки не отмечалось

Эти данные противоречат общепринятому мнению о наличии корреляции между липофильностью ИГКС и их способностью к тканевой связи, так как менее липофильный будесонид задерживается дольше, чем ФП и БДП. Данный факт следует объяснить тем, что под действием ацетил-коэнзима А и аденозина трифосфата гидроксильная группа будесонида у атома углерода в положении 21 (С-21) замещается сложным эфиром жирных кислот, то есть происходит эстерификация будесонида с образованием конъюгатов будесонида с жирными кислотами. Этот процесс протекает внутриклеточно в тканях легких и дыхательных путей и в печеночных микросомах, где идентифицированы эфиры жирных кислот (олеаты, пальмитаты и др.) . Конъюгация будесонида в дыхательных путях и легких происходит быстро, так как уже через 20 мин после применения препарата 70—80% Ra-метки определялось в виде конъюгатов и 20—30% — в виде интактного будесонида, тогда как через 24 ч определялось только 3,2% конъюгатов первоначального уровня конъюгации, причем в одинаковой пропорции они были выявлены в трахее и в легких, что свидетельствует об отсутствии неопределенных метаболитов . Конъюгаты будесонида имеют очень низкое сродство к ГКР и потому не обладают фармакологической активностью .

Внутриклеточная конъюгация будесонида с жирными кислотами может происходить во многих типах клеток, будесонид может накапливаться в неактивной, но обратимой форме. Липофильные конъюгаты будесонида образуются в легких в тех же пропорциях, что и в трахее, что указывает на отсутствие неидентифицированных метаболитов . Конъюгаты будесонида не определяются в плазме и в периферических тканях.

Конъюгированный будесонид гидролизируется внутриклеточными липазами, постепенно высвобождая фармакологически активный будесонид, что может удлинить сатурацию рецептора и пролонгировать глюкокортикоидную активность препарата.

Если будесонид приблизительно в 6—8 раз менее липофилен, чем ФП, и, соответственно, в 40 раз менее липофилен по сравнению с БДП, то липофильность конъюгатов будесонида с жирными кислотами в десятки раз превышает липофильность интактного будесонида (табл. 3), чем и объясняется длительность его пребывания в тканях дыхательных путей .

Исследования показали, что эстерификация жирной кислотой будесонида приводит к пролонгированию его противовоспалительной активности. При пульсирующем назначении будесонида было отмечено удлинение ГКС-эффекта, в отличие от ФП. В то же время в исследовании in vitro при постоянном присутствии ФП оказался в 6 раз эффективнее будесонида . Возможно, это объясняется тем, что ФП легче и быстрее извлекается из клеток, чем более конъюгированный будесонид, в результате чего примерно в 50 раз снижается концентрация ФП и, соответственно, его активность ).

Таким образом, после ингаляции будесонида в дыхательных путях и легких образуется «депо» неактивного препарата в виде обратимых конъюгатов с жирными кислотами, что может удлинить его противовоспалительную активность. Это, несомненно, имеет огромное значение для лечения больных БА. Что касается БДП, более липофильного, чем ФП (табл. 4), то время его задержки в тканях дыхательных путей короче, чем у ФП, и совпадает с этим показателем у дексаметазона, что является, по-видимому, результатом гидролиза БДП до 17-БМП и беклометазона, липофильность последнего и дексаметазона одинаковы . Более того, в исследовании in vitro длительность пребывания Ra-метки в трахее после ингаляции БДП была больше, чем после его перфузии, что связано с очень медленным растворением кристаллов БДП, откладываемых в респираторных просветах во время ингаляции .

Продолжительное фармакологическое и терапевтическое действие ИГКС объясняется связью ГКС с рецептором и образованием комплекса ГКС+ГКР. Вначале будесонид связывается с ГКР медленнее, чем ФП, но быстрее, чем дексаметазон, однако через 4 ч разница в общем количестве связи с ГКР между будесонидом и ФП не обнаруживалась, в то время как у дексаметазона она составляла только 1/3 от связанной фракции ФП и будесонида.

Диссоциация рецептора из комплекса ГКС+ГКР отличалась у будесонида и ФП, будесонид по сравнению ФП диссоцируется быстрее из комплекса. Длительность комплекса будесонид+рецептор in vitro составляет 5—6 ч, этот показатель ниже по сравнению с ФП (10 ч) и 17-БМП (8 ч) , но более высок по сравнению с дексаметазоном . Из этого следует, что различия в местной тканевой связи будесонида, ФП, БДП не определяются на уровне рецепторов, а преимущественное влияние на разницу показателей оказывают различия в степени неспецифической связи ГКС с клеточными и субклеточными мембранами.

Как было показано выше (), наибольшее сродство к ГКР имеет ФП (приблизительно в 20 раз выше, чем у дексаметазона, в 1,5 раза выше, чем у 17-БМП, и в 2 раза выше, чем у будесонида) . На сродство ИГКС к ГКС-рецептору может оказать влияние и конфигурация молекулы ГКС. Например, у будесонида его право- и левовращающие изомеры (22R и 22S) имеют не только различное сродство к ГКР, но и разную противовоспалительную активность (табл. 4).

Сродство 22R к ГКР более чем в 2 раза превосходит сродство 22S, а будесонид (22R22S) занимает в этой градации промежуточное положение, его сродство к рецептору равно 7,8, а сила подавления отека — 9,3 (параметры дексаметазона приняты за 1,0) (табл. 4).

Метаболизм

БДП быстро, в течение 10 мин, метаболизируется в печени с образованием одного активного метаболита — 17-БМП и двух неактивных — беклометазона 21-монопропионата (21-БМН) и беклометазона .

В легких из-за низкой растворимости БДП, являющейся определяющим фактором в степени образования 17-БМП из БДП, может быть замедлено образование активного метаболита. Метаболизм 17-БМП в печени происходит в 2—3 раза медленнее, чем, например, метаболизм будесонида, что может быть лимитирующим фактором перехода БДП в 17-БМП.

ТАА метаболизируется с образованием 3 неактивных метаболитов: 6β-триокситриамцинолона ацетонида, 21-карбокситриамцинолона ацетонида и 21-карбокси-6β-гидрокситриамцинолона ацетонида.

Флунизолид образует главный метаболит — 6β-гидроксифлунизолид, фармакологическая активность которого в 3 раза превосходит активность гидрокортизона и имеет Т1/2 равную 4 ч.

ФП быстро и полностью инактивируется в печени с образованием одного частично активного (1% активности ФП) метаболита — 17β-карбоксильной кислоты.

Будесонид быстро и полностью метаболизируется в печени при участии цитохрома р450 3А (CYP3A) с образованием 2 главных метаболитов: 6β-гидроксибудесонид (образует оба изомера) и 16β-гидроксипреднизолон (образует только 22R). Оба метаболита обладают слабой фармакологической активностью.

Мометазона фуроат (фармакокинетические параметры препарата изучались у 6 добровольцев после ингаляции 1000 мкг — 5 ингаляций сухой пудры с радиометкой): 11% радиометки в плазме определялось через 2,5 ч, этот показатель увеличивался до 29% через 48 ч. Экскреция радиометки с желчью составила 74% и с мочой 8%, общее количество достигало 88% через 168 ч .

Кетоконазол и циметидин могут увеличить уровень будесонида в плазме после перорально принятой дозы в результате блокады CYP3A.

Клиренс и период полувыведения

ИГКС имеют быстрый клиренс (CL), его величина примерно совпадает с величиной печеночного кровотока, и это является одной из причин минимальных проявлений системных НЭ. С другой стороны, быстрый клиренс обеспечивает ИГКС высокий терапевтический индекс. Клиренс ИГКС колеблется в пределах от 0,7 л/мин (ТАА) до 0,9—1,4 л/мин (ФП и будесонид, в последнем случае имеет место зависимость от принятой дозы). Системный клиренс для 22R составляет 1,4 л/мин и для 22S — 1,0 л/мин. Наиболее быстрый клиренс, превышающий скорость печеночного кровотока, обнаружен у БДП (150 л/ч, а по другим данным — 3,8 л/мин, или 230 л/ч) (), что дает основание предполагать наличие внепеченочного метаболизма БДП, в данном случае в легких, приводящего к образованию активного метаболита 17-БМП . Клиренс 17-БМП равняется 120 л/ч.

Период полувыведения (Т1/2) из плазмы крови зависит от объема распределения и величины системного клиренса и указывает на изменение концентрации препарата с течением времени. У ИГКС Т1/2 из плазмы крови колеблется в широких пределах — от 10 мин (БДП) до 8—14 ч (ФП) (). Т1/2 других ИГКС довольно короткий — от 1,5 до 2,8 ч (ТАА, флунизолид и будесонид) и 2,7 ч у 17-БМП . У флютиказона Т1/2 после внутривенного введения составляет 7—8 ч, в то время как после ингаляции из периферической камеры этот показатель равен 10 ч . Имеются и другие данные, например, если Т1/2 из плазмы крови после внутривенного введения был равен 2,7 (1,4—5,4) ч, то Т1/2 из периферической камеры, рассчитанный по трехфазовой модели, составлял в среднем 14,4 ч (12,5—16,7 ч), что связано с относительно быстрой абсорбцией препарата из легких — Т1/2 2 (1,6-2,5) ч по сравнению с его медленной системной элиминацией . Последняя может привести к аккумуляции препарата при длительном его применении, что было показано после семидневного назначения ФП через дискахалер в дозе 1000 мкг 2 раза в день 12 здоровым добровольцам, у которых концентрация ФП в плазме крови увеличивалась в 1,7 раза по сравнению с концентрацией после однократной дозы 1000 мкг. Аккумуляция сопровождалась увеличением подавления уровня кортизола в плазме крови (95% против 47%) .

Заключение

Биодоступность ингаляционных ГКС зависит от молекулы препарата, от системы доставки препарата в дыхательные пути, от техники ингаляции и др. При местном назначении ИГКС происходит значительно лучший захват препаратов из дыхательных путей, они дольше удерживаются в тканях дыхательных путей, обеспечивается высокая селективность препаратов, особенно флютиказона пропионата и будесонида, лучшее соотношение эффект/риск и высокий терапевтический индекс препаратов. Внутриклеточная эстерификация будесонида жирными кислотами в тканях дыхательных путей приводит к местной задержке и формированию «депо» неактивного, но медленно регенерирующего свободного будесонида. Более того, большой внутриклеточный запас конъюгированного будесонида и постепенное выделение свободного будесонида из конъюгированной формы может удлинить сатурацию рецептора и противовоспалительную активность будесонида, несмотря на его меньшее, по сравнению с флютиказоном пропионатом и беклометазоном монопропионатом, сродство к ГКС-рецептору . На сегодняшний день существуют единичные сведения о фармакокинетических исследованиях весьма перспективного и высокоэффективного препарата мометазона фуроата, у которого при отсутствии биодоступности при ингаляционном введении обнаруживаются высокая противовоспалительная активность у больных астмой.

Длительная экспозиция и замедленная сатурация рецептора обеспечивают удлинение противовоспалительной активности будесонида и флютиказона в дыхательных путях, что может служить основанием для однократного назначения препаратов.

По вопросам литературы обращайтесь в редакцию

Литература
  1. Affrime M. B., Cuss F., Padhi D. et al. Bioavailability and Metabolism of Mometasone Furoate following Administration by Metered-Dose and Dry-Powder Inhalers in Healthy Human Volunteers // J. Clin. Pharmacol. 2000: 40; 1227-1236.
  2. Barnes P. J. Inhaled glucocorticoids: new developments relevant to updating the asthma management guidelines // Respir. Med. 1996; 9: 379-384
  3. Barnes P. J., Pedersen S., Busse W. W. Efficacy and safety of inhaled corticosteroids //Am. J. Respir. Crit. Care Med 1998; 157: 51- 53
  4. Barry P. W., Callaghan C. O. Inhalation drug delivery from seven different spacer devices Thorax 1996; 51: 835-840.
  5. Borgstrom L. E, Derom E., Stahl E. et al. The inhalation device influences lung deposition and bronchodilating effect of terbutaline //Am. J. Respir. Crit. Care Med. 1996; 153: 1636-1640.
  6. Brattsand R. What factors determine antiinflammatory activity and selectivity of inhaled steroids // Eur. Respir. Rev. 1997; 7: 356-361.
  7. Daley-Yates P. T., Price A. C., Sisson J. R. et al. Beclomethasone dipropionat: absolute bioavailability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled administration in men // Br. J. Clin. Pharmacol. 2001; 51: 400-409.
  8. Derendorf H. Pharmacokinetic and pharmacodynamic properties of inhaled corticosteroids in relation to efficacy and safety // Respir. Med. 1997; 91 (Suppl. A): 22-28.
  9. Esmailpour N., Hogger P., Rabe K. F. et al. Distribution of inhaled fluticason propionate between human lung tissue and serum in vivo // Eur. Respir. J. 1997; 10: 1496-1499.
  10. Guidelines for the Diagnosis and Management of asthma. Expert panel report, № 2. National institutes of health, Bethesda, MD. (NIP Publication № 97-4051).
  11. Hogger P., Ravert J., Rohdewald P. Dissolution, tissue binding and kinetics of receptor binding of inhaled glucocorticoids // Eur. Resip. J. 1993; 6: (Suppl. 17): 584 s.
  12. Hogger P., Rohdewald P. Binding kinetics of fluticason propionate to the human glucocorticoid receptor. Steroids 1994; 59: 597-602.
  13. Hogger P., Erpenstein U., Sorg C. et al Receptor affinity, protein expression and clinical efficacy of inhaled glucocorticoids // Am. J. Respir. Crit. Care Med. 1996; 153: A 336.
  14. Jackson W. F. Nebulised Budesonid Therapy in asthma scientific and Practical Review. Oxford, 1995: 1-64.
  15. Jenner W. N., Kirkham D. J. Immunoassay of beclomethasone 17-, 21-dipropionate and metabolites. In: Reid E, Robinson JD, Wilson I, eds. Bioanalysis of drugs and metabolites, New York, 1988: 77-86.
  16. Kenyon C. J., Thorsson L., Borgstrom L. Reduction in lung deposition of budesonide pressurized aerosol resulting from static chanjge? In plastic spacer devices // Drug delivery to the lungs. 1996; 7: 17-18.
  17. Miller-Larsson A., Maltson R. H., Ohlsson D. et al. Prolonged release from the airway tissue of glucocorticods budesonile and fluticasone propionate as compared to beclomethasone dipropionate and hydrocortisone (abstract) // Am. J. Respir. Crit. Care Med. 1994; 149: A 466.
  18. Miller-Larsson A., Maltson R. H., Hjertberg E. et al. Reversible fatty acid conjugation of budesonide: novel mechanism for prolonged retention of topically applied steroid in airway tissue // Drug. metabol. Dispos. 1998; v. 26 N 7: 623-630.
  19. Pedersen S., Byrne P. O. A comparison of the efficacy and safety of inhaled corticosteroids in asthma // Eur J Allergy Clin Immunol 1997; 52 (Suppl. 39): 1-34
  20. Selroos O., Pietinalho A., Lofroos A. B., Riska A. High-dose is more effective than low-dose inhaled corticosteroids when starting medication in patients with moderately severe asthma (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155: A 349.
  21. Thorsson L., Dahlstrom K., Edsbacker S et al. Pharmacokinetics and systemic effects of inhaled fluticasone propionate in healthy subjects // Br. J. Clin. Pharmacol. 1997; 43: 155-161.
  22. Thorsson L., Edsbacker S. Conradson T. B. Lung deposition of budesonide from Turbuhaler is twice that from a pressured metered-dose-inhaler p-MDI // Eur. Respir. J. 1994; 10: 1839-1844.
  23. Tood G., Danlop K. Cason D., Shields M. Adrenal suppression in asthmatic children treated with high-dose fluticason propionate (abstract) // Am. J. Respir. Crit. Care Med. 1997; 155. № 4 (part 2 of 2 parts): A 356l.
  24. Trescoli-Serrano C., Ward W. J., Garcia-Zarco M. et al. Gastroinstestinal absorbtion of inhaled budesonide and beclomethasone: has it any significant systemic effect? // Am. J. Respir. Crit. Care Med. 1995; 151 (№ 4 part 2): A 3753.
  25. Tunec A. K., Sjodin, Hallstrom G. Reversible formation of fatty acid esters of budesonide, an anti-asthma glucocorticoid, in human lung and liver microsomes // Drug. Metabolic. Dispos. 1997; 25: 1311-1317.
  26. Van den Bosch J. M., Westermann C. J. J., Edsbacker J. et al. Relationship between lung tissue and blood plasma concentrations of inhaled budesonide // Biopharm Drug. Dispos. 1993; 14: 455-459.
  27. Wieslander E., Delander E. L., Jarkelid L. et al. Pharmacological importance of the reversible fatty acid conjugation of budesonide stadied in a rat cell line in vitro // Am. J. Respir. Cell. Mol. Biol. 1998; 19: 1-9.
  28. Wurthwein G., Render S., Rodhewald P. Lipophility and receptor affinity of glucocorticoids // Pharm Ztg. Wiss. 1992; 137: 161-167.
  29. Dietzel K. et al. Ciclesonide: an On-Site-Activate Steroid // Prog. Respir. Res. Basel. Karger. 2001: v. 31; p. 91-93.