Здоровье

Концепция замены дефективных генов здоровыми, которая стала активно приобретать научную оболочку еще в начале девяностых годов прошлого века , казалось, подарит надежду самым безнадежным больным. Однако с момента первого эксперимента по генной терапии, осуществленном в 1990-ом году, оптимизма у ученых несколько поубавилось – и все из-за определенных неудач и трудностей в реализации методов генной терапии. Однако возможности, которые предлагает генная терапия для лечения болезни Паркинсона, кистозного фиброза, различных видов рака, и многих других заболеваний, поистине безграничны. Именно поэтому ученые трудятся не покладая рук , стараясь преодолеть все возникающие у них на пути трудности, связанные с генотерапией.

Что такое генотерапия?

Так чем же является генная терапия на самом деле? Для того, чтобы ответить на данный вопрос, необходимо напомнить, что основной функцией генов в нашем организме является регулирование производства белков , необходимых для нормальной работы и здоровья всех клеток. Но некоторые генетические дефекты (изъяны в генах) мешают выполнению их главной функции, в той или иной степени препятствуя выработке белков. Целью же генной терапии (генотерапии) является замена дефективных генов здоровыми . Это поможет наладить воспроизводство соответствующего белка, а значит, человек будет излечен от определенной болезни.

Если рассматривать идеальный сценарий развития, клетки с подкорректированными молекулами дезоксирибонуклеиновой кислоты (ДНК) начнут делиться, производя, в свою очередь, множественные копии исправленного гена, что позволит организму избавиться от генетической аномалии и полностью излечиться. Однако введение здоровых генов в больные клетки (как и попытки исправить соответствующие отклонения) является крайне сложным процессом, который пока крайне редко приводил к успеху . Именно поэтому большинство современных исследований направлено на разработку безопасных и надежных механизмов введения генов в поврежденные клетки.

Виды генной терапии: терапия ex vivo и in vivo

Генная терапия, в зависимости от способа введения ДНК в геном пациента, может осуществляться либо в культуре клеток (ex vivo), либо непосредственно в организме (in vivo) . В случае с генной терапией ex vivo, клетки изымаются из организма пациента, генетически модифицируются, а затем вводятся обратно в организм индивидуума. Этот метод особенно полезен в лечении заболеваний крови, так как клетки крови можно довольно легко изъять и ввести обратно. Однако в случае с большинством других заболеваний, изъять клетки из организма и ввести обратно далеко не так просто. К примеру, в случае с заболеваниями сердца, обусловленными генетическими причинами , эффективным мероприятием является так называемая генная терапия in vivo, когда изменения генов осуществляются непосредственно в организме пациента. Для того чтобы проделать данную процедуру, генетическая информация доставляется непосредственно в клетку посредством вектора – молекулы нуклеиновой кислоты, используемой в генной инженерии для передачи генетического материала . В большинстве случаев, для того чтобы осуществить эту передачу, исследователи используют не опасные для здоровья и жизни вирусы.

Способы доставки в клетку генетической информации

Как показывают многочисленные исследования, использование различных вирусов является весьма эффективным решением, которое позволяет пробраться через имунную защиту организма , а затем инфицировать клетки, используя их для распространения вируса. Для осуществления данной процедуры, генные инженеры выбрали наиболее подходящие вирусы из группы ретровирусов и аденовирусов. Ретровирусы привносят генетическую информацию в виде рибонуклеиновой кислоты (РНК), молекулы, похожей на молекулу ДНК, которая помогает перерабатывать генетическую информацию, сохраненную в ДНК. Как только удается проникнуть вглубь так называемой клетки-мишени, из молекулы РНК получается копия молекулы ДНК. Данный процесс называется обратной транскрипцией. Как только новая молекула ДНК оказывается присоединенной к клетке, все новые копии клеток будут содержать этот модифицированный ген.

Аденовирусы несут генетическую информацию сразу в виде ДНК, который доставляется в неделящуюся клетку. Хотя эти вирусы доставляют ДНК непосредственно в ядро клетки-мишени , ДНК не совмещается с геномом клетки. Таким образом, модифицированный ген и генетическая информация не передаются дочерним клеткам. Преимуществом генной терапии, проводимой с помощью аденовирусов, заключается в том, что существует возможность введения генов в клетки нервной системы и в слизистую оболочку дыхательных путей, опять же, посредством вектора. Кроме того, существует и третий метод генной терапии, осуществляемый посредством так называемых аденоассоциированных вирусов. Эти вирусы содержат относительно небольшое количество генетической информации , и их гораздо сложнее вывести, чем ретровирусы и аденовирусы. Однако преимущество аденоассоциированных вирусов заключается в том, что они не вызывают реакции иммунной системы человека.

Сложности, при использовании вирусов в генной терапии

Главная проблема, которая связана со способом доставки генетической информации в клетку посредством вирусов, заключается в том, что полностью проконтролировать соединение генов с клеткой-мишенью чрезвычайно сложно . Это может быть крайне опасно, так как не исключена так называемая экспрессия генов, которая способна превратить здоровые клетки в раковые. На данный момент времени, эта проблема является особенно насущной в работе с ретровирусами. Вторая проблема, решение которой пока невозможно организовать , заключается в том, что одной процедуры применения генной терапии, чаще всего, бывает недостаточно. Большинство генетических терапий необходимо время от времени повторять. И, в третьих, использование вирусов для доставки генетической информации в клетку, осложняется риском возникновения реакции иммунной системы организма. Это также является крайне серьезной проблемой, особенно в тех случаях, когда требуется неоднократное повторение процедуры генной терапии , так как организм пациента постепенно адаптируется и начинает все эффективнее бороться с вводимыми вирусами.

Генная терапия: исследования продолжаются

Если говорить об успехах, то на данный момент времени генетическая терапия является крайне эффективным мероприятием в лечении так называемого комбинированного иммунодефицита , сцепленного с X-хромосомой ген. С другой стороны, случаев успешного использования генотерапии для лечения данной болезни крайне мало. Кроме того, само лечение представляет собой рискованное мероприятие, так как способно вызвать у пациентов ряд симптомов, которые встречаются у людей, страдающих от лейкемии. Помимо данного заболевания, случаев использования генной терапии, которые были бы так же эффективны, очень и очень мало, хотя последние исследования и дают надежду на скорое использование генотерапии для лечения больных, страдающих от артрита, рака мозга, серповидно-клеточной анемии, расщелины сетчатки и от некоторых других состояний.

Получается, что о практическом применении генной терапии в медицине говорить еще очень рано. Тем не менее, исследователи продолжают искать способы безопасного и эффективного использования генной терапии , проведя большую часть экспериментов в живой ткани, перенесенной из организма в искусственную внешнюю среду. Среди этих экспериментов крайне интересными представляются исследования, в рамках которых ученые пытаются ввести в клетку-мишень искусственную, 47-ю хромосому. Недавние научные изыскания позволили ученым лучше разобраться в процессах, происходящих при внедрении молекулы РНК . Это позволило разработать механизм подавления транскрипции гена (так называемое выключение гена), который, возможно, принесет пользу в лечении болезни Гамильтона. Ученые сообщают также о том, что им удалось разработать способ доставки генетической информации в клетки мозга, чего раньше нельзя было осуществить с помощью вектора, так как данная молекула была чересчур велика для этой цели . Иными словами, исследования продолжаются, а это значит, что у человечества есть все шансы научиться бороться с заболеваниями посредством использования методов генной терапии.

Генная терапия человека в широком смысле предусматривает введение в клетки функционально активного гена (генов) с целью исправления генетического дефекта. Существуют два возможных пути лечения наследственных болезней. В первом случае генетической трансформации подвергают соматические клетки (клетки, отличные от половых). При этом коррекция генетического дефекта ограничивается определенным органом или тканью. Во втором случае изменяют генотип клеток зародышевой линии (сперматозоидов или яйцеклеток) или оплодотворенных яйцеклеток (зигот), чтобы все клетки развившегося из них индивидуума имели "исправленные" гены. В результате генной терапии с использованием клеток зародышевой линии генетические изменения передаются из поколения в поколение.

Политика в области генной терапии соматических клеток.

В 1980 г. представители католической, протестантской и иудейской общин США написали открытое письмо Президенту с изложением своих взглядов на использование генной инженерии применительно к человеку. Для оценки этических и социальных аспектов этой проблемы были созданы Президентская комиссия и комиссия Конгресса. Это были очень важные инициативы, поскольку в США введение в действие программ, затрагивающих интересы общества, часто осуществляется на основе рекомендаций подобных комиссий. В окончательных заключениях обеих комиссий проводилась четкая граница между генной терапией соматических клеток и генной терапией клеток зародышевой линии. Генная терапия соматических клеток была отнесена к стандартным методам медицинского вмешательства в организм, сходным с трансплантацией органов. В противоположность этому генная терапия клеток зародышевой линии была сочтена технологически очень сложной и проблематичной с точки зрения этики, чтобы безотлагательно начинать ее практическое применение. Был сделан вывод о необходимости выработки четких правил, регулирующих исследования в области генной терапии соматических клеток; разработка подобных документов применительно к генной терапии клеток зародышевой линии была сочтена преждевременной. Чтобы пресечь все незаконные действия, было решено прекратить все эксперименты в области генной терапии клеток зародышевой линии.

К 1985 г. разработали документ, озаглавленный "Положения о составлении и подаче заявок на проведение экспериментов в области генной терапии соматических клеток". В нем содержалась вся информация о том, какие данные должны быть представлены в заявке на разрешение испытаний в области генной терапии соматических клеток на человеке. За основу были взяты правила, регулирующие лабораторные исследования с рекомбинантными ДНК; они были лишь адаптированы применительно к биомедицинским целям.

Биомедицинское законодательство было пересмотрено и дополнено в 1970-х гг. в ответ на обнародование в 1972 г. результатов 40-летнего эксперимента, проводившегося Национальной службой здравоохранения США в Алабаме на группе из 400 неграмотных афроамериканцев, больных сифилисом. Эксперимент был поставлен для того, чтобы изучить естественное развитие указанного заболевания, передающегося половым путем, никакого лечения при этом не проводилось. Известие о таком чудовищном опыте на неинформированных о нем людях потрясло многих в США. Конгресс немедленно прекратил эксперимент и издал закон, запрещавший когда-либо впредь проведение подобных исследований.

Среди вопросов, адресуемых лицам, которые подавали ходатайство на разрешение экспериментов в области генной терапии соматических клеток, были следующие:

  • 1. Что представляет собой заболевание, которое предполагается лечить?
  • 2. Насколько оно серьезно?
  • 3. Существуют ли альтернативные методы лечения?
  • 4. Насколько опасно предполагаемое лечение для больных?
  • 5. Какова вероятность успеха лечения?
  • 6. Как будут отбираться больные для клинических испытаний?
  • 7. Будет ли этот отбор беспристрастным и репрезентативным?
  • 8. Как больные будут информироваться об испытаниях?
  • 9. Какого рода информацию следует им сообщать?
  • 10. Каким образом будет получено их согласие?
  • 11. Как будет гарантироваться конфиденциальность сведений о больных и проведении исследований?

Когда эксперименты в области генной терапии только начинались, большая часть заявок на клинические испытания вначале рассматривалась Комитетом по этике того учреждения, где предполагалось осуществлять исследования, и только потом они пересылались в Подкомитет по генной терапии человека. Последний оценивал заявки с точки зрения их научной и медицинской значимости, соответствия действующим правилам, убедительности доводов. Если заявка отклонялась, ее возвращали назад с необходимыми комментариями. Авторы заявки могли пересмотреть предложение и переработать его. Если заявка утверждалась, то Подкомитет по генной терапии обсуждал ее в публичных дискуссиях, используя те же самые критерии. После одобрения заявки на таком уровне директор Подкомитета утверждал ее и подписывал разрешение на клинические испытания, без которого они не могли быть начаты. В этом последнем случае особое внимание обращалось на способ получения продукта, методы качественного контроля его чистоты, а также на то, какие доклинические испытания были проведены, чтобы убедиться в безопасности продукта.

Но, поскольку число заявок со временем увеличивалось, а генная терапия становилась, по словам одного комментатора, "выигрышным билетом в медицине", принятая первоначально процедура утверждения заявок была признана неоправданно трудоемкой и избыточной. Соответственно после 1997 г. Подкомитет по генной терапии уже не входил в число учреждений, контролирующих исследования в области генной терапии человека. Если Подкомитет и будет существовать, то он, скорее всего, станет организатором форумов по обсуждению этических проблем, связанных с генной терапией человека. А пока требование, согласно которому все заявки в области генной терапии должны обсуждаться публично, снято. Учреждение, ответственное за контроль производства и использования биологических продуктов, проводит все необходимые оценки конфиденциально, чтобы гарантировать соблюдение права собственности разработчиков. В настоящее время генная терапия человека считается безопасной медицинской процедурой, хотя и не особенно эффективной. Высказывавшиеся ранее опасения рассеялись, и она стала одним из основных новых подходов к лечению заболеваний человека.

Большинство специалистов считают процедуру утверждения испытаний в области генной терапии соматических клеток человека в США вполне адекватной; она гарантирует беспристрастный отбор больных и их информированность, а также осуществление всех манипуляций должным образом, без причинения вреда, как конкретным больным, так и человеческой популяции в целом. В настоящее время в других странах тоже разрабатываются правила проведения испытаний в области генной терапии. В США это было сделано в результате тщательного взвешивания каждого предложения. Как сказал один из участников слушаний, организованных Подкомитетов по генной терапии в январе 1989 г., доктор Уолтере: "Я не знаю никакой другой биомедицинской науки или технологии, которая бы подвергалась столь всесторонней проверке, как генная терапия".

Накопление дефектных генов в будущих поколениях.

Существует мнение, что лечение генетических заболеваний с помощью генной терапии соматических клеток неизбежно приведет к ухудшению генофонда человеческой популяции. Оно основывается на представлении, что частота дефектного гена в популяции будет увеличиваться от поколения к поколению, поскольку генная терапия будет способствовать передаче мутантных генов следующему поколению от тех людей, которые до этого были неспособны произвести потомство или не могли дожить до половозрелого возраста. Однако эта гипотеза оказалась неверной. По данным популяционной генетики, для существенного повышения частоты вредного или летального гена в результате эффективного лечения требуются тысячи лет. Так, если какое-то редкое генетическое заболевание встречается у одного из 100 000 жизнеспособных новорожденных, то пройдет примерно 2000 лет после начала применения эффективной генной терапии, прежде чем частота указанного заболевания удвоится и составит 1 случай на 50 000.

Помимо того, что частота летального гена от поколения к поколению почти не повышается, в результате длительного лечения всех, кто в этом нуждается, генотип отдельных индивидуумов тоже остается неизменным. Это положение можно проиллюстрировать примером из истории эволюции. Приматы, в том числе и человек, неспособны синтезировать жизненно важный витамин С, они должны получать его из внешних источников. Таким образом, можно сказать, что мы все генетически дефектны по гену этого жизненно важного вещества. В противоположность этому амфибии, рептилии, птицы и млекопитающие, не относящиеся к приматам, синтезируют витамин С. И тем не менее генетический дефект, обусловливающий неспособность к биосинтезу витамина С, не "помешал" успешной эволюции приматов на протяжении более миллионов лет. Сходным образом, и коррекция других генетических дефектов не приведет к существенному накоплению "нездоровых" генов у будущих поколений.

Генная терапия клеток зародышевой линии.

Эксперименты в области генной терапии клеток зародышевой линии человека сейчас строго запрещены, однако приходится признать, что некоторые генетические заболевания можно вылечить только таким путем. Методология генной терапии клеток зародышевой линии человека разработана пока недостаточно. Однако не вызывает сомнения, что с развитием методов генетического манипулирования на животных и диагностического тестирования преимплантационных эмбрионов этот пробел будет восполнен. Более того, поскольку генная терапия соматических клеток становится все более рутинной процедурой, это скажется и на отношении людей к генной терапии клеток зародышевой линии человека, и через некоторое время возникнет необходимость ее тестирования. Остается только надеяться, что к тому времени все проблемы, связанные с последствиями практического применения генной терапии клеток зародышевой линии человека, в том числе социальное и биологическое, будут урегулированы.

Считается, что генная терапия человека может помочь в лечении серьезных заболеваний. Действительно, она способна обеспечить коррекцию ряда физических и психических нарушений, хотя остается неясным, сочтет ли общество приемлемым такое применение генной терапии. Подобно любому другому новому медицинскому направлению, генная терапия клеток зародышевой линии человека вызывает многочисленные вопросы, а именно:

  • 1. Какова стоимость разработки и внедрения методов генной терапии клеток зародышевой линии человека?
  • 2. Должно ли правительство устанавливать приоритеты медицинских исследований?
  • 3. Не приведет ли приоритетное развитие генной терапии клеток зародышевой линии к свертыванию работ по поиску других способов лечения?
  • 4. Удастся ли охватить всех больных, которые в этом нуждаются?
  • 5. Сможет ли физическое лицо или компания получить исключительные права на проведение лечения конкретных болезней с помощью генной терапии?

Клонирование человека.

Интерес общественности к возможности клонирования человека возник в 1960-х гг., после того как были проведены соответствующие эксперименты на лягушках и жабах. Эти исследования показали, что ядро оплодотворенной яйцеклетки можно заменить ядром недифференцированной клетки, и при этом эмбрион будет развиваться нормально. Таким образом, в принципе можно выделить ядра из недифференцированных клеток какого-либо организма, ввести их в оплодотворенные яйцеклетки того же самого организма и получить потомство с тем же генотипом, что и у родителя. Другими словами, каждый из организмов-потомков можно считать генетическим клоном исходного донорного организма. В 1960-е гг. казалось, что, несмотря на отсутствие технических возможностей, не составляет труда экстраполировать результаты клонирования лягушки на человека. В прессе появилось множество статей на эту тему, были даже написаны научно-фантастические произведения. Один из рассказов был посвящен клонированию вероломно убитого президента США Джона Ф. Кеннеди, однако более популярной темой было клонирование злодеев. Произведения о клонировании человека были не только неправдоподобными, но и пропагандировали ошибочную и весьма опасную идею, что личностные особенности, характер и другие качества человека обусловлены исключительно его генотипом. На самом же деле человек как личность формируется под влиянием, как своих генов, так и условий среды, в частности культурных традиций. Например, злостный расизм, который проповедовал Гитлер, -- приобретенное поведенческое качество, не определяемое каким-то одним геном или их комбинацией. В другой среде с иными культурными особенностями из "клонированного Гитлера" не обязательно сформировался бы человек, подобный реально существовавшему Гитлеру. Сходным образом, из "клона матери Терезы" не обязательно "получилась" бы женщина, посвятившая свою жизнь помощи бедным и больным в Калькутте.

По мере развития методов репродуктивной биологии млекопитающих и создания различных трансгенных животных становилось все более очевидным, что клонирование человека - дело не столь отдаленного будущего. Предположение стало реальностью в 1997 г., когда была клонирована овечка, названная Долли. Для этого использовалось ядро дифференцированной клетки донорной суягной овцы. Методический подход, который использовался при "создании" Долли, в принципе пригоден для получения клонов любых млекопитающих, в том числе и человека. И даже если он не оправдает себя применительно к млекопитающим других видов, по-видимому, не потребуется слишком много экспериментов, чтобы разработать подходящий метод. В результате клонирование человека тотчас станет предметом любой дискуссии, затрагивающей этические проблемы генетики и биологической медицины.

Без сомнения, клонирование человека - сложная и противоречивая проблема. Для одних сама мысль о создании копии уже существующего индивидуума путем экспериментальных манипуляций представляется неприемлемой. Другие считают, что клонированный индивидуум - это то же самое, что и однояйцовый близнец, несмотря на разницу в возрасте, и, следовательно, клонирование по своей природе не злонамеренно, хотя, возможно, не так уж необходимо. Клонирование может дать положительный медицинский и социальный эффект, оправдывающий его проведение в исключительных случаях. Например, оно может оказаться жизненно важным для родителей больного ребенка. Ответственность за опыты по клонированию человека во многих странах регулируется законодательно, причем все исследования, связанные с клонированием человека, запрещены. Таких ограничений достаточно, чтобы исключить возможность клонирования людей. Однако вопрос о неизбежности клонирования человека обязательно возникнет.

Введение

С каждым годом в научных журналах появляется всё больше статей о медицинских клинических исследованиях, в которых, так или иначе, применялось лечение, основанное на введении различных генов - генная терапия. Это направление выросло из таких хорошо развивающихся разделов биологии, как молекулярная генетика и биотехнология.

Зачастую, когда обычные (консервативные) методы уже перепробованы, именно генная терапия может помочь пациентам выжить и даже полностью выздороветь. Например, это касается наследственных моногенных заболеваний, то есть таких, которые вызваны дефектом в одном-единственном гене, а также и многих других . Или, к примеру, генная терапия может выручить и спасти конечность тем больным, у которых сужен просвет сосудов в нижних конечностях и вследствие этого развилась стойкая ишемия окружающих тканей, то есть эти ткани испытывают сильный недостаток питательных веществ и кислорода, которые в норме разносятся кровью по организму . Хирургическими манипуляциями и лекарствами таких пациентов лечить зачастую не получается, зато если локально заставить клетки выбрасывать наружу больше белковых факторов, которые повлияли бы на процесс образования и прорастания новых сосудов, то ишемия стала бы гораздо менее выраженной и жить больным станет гораздо легче.

Генную терапию сегодня можно определить как лечение заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты совсем недавно - 22 мая 1989 года в целях диагностики рака. Первым наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммуннодефицит .

С каждым годом число успешно проведенных клинических испытаний лечения различных заболеваний с использованием генной терапии растёт, и к январю 2014 г. достигло 2 тысяч .

Вместе с тем и в современных исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами или «перетасованными» (рекомбинантными) ДНК in vivo (лат. буквально "в живом") изучены недостаточно. В странах с наиболее продвинутым уровнем исследований в этой области, особенно в США, медицинские протоколы с использованием смысловых последовательностей ДНК подвергаются обязательной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консультативный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and Drug Administration, FDA) с последующим обязательным утверждением проекта директором Национальных институтов здоровья (National Institutes of Health) .

Итак, мы определились, что данное лечение основано на том, что если какие-то ткани организма испытывают недостаток некоторых отдельных белковых факторов, то это можно исправить введением в эти ткани соответствующих генов, кодирующих белки, и всё станет более или менее замечательно. Сами белки вводить не получится, потому что наш организм тут же среагирует неслабой иммунной реакцией, да и длительность действия была бы недостаточной. Теперь следует определиться с методом доставки гена в клетки.

Трансфекция клеток

Для начала стоит ввести определения некоторых терминов.

Транспорт генов осуществляется благодаря вектору - это молекула ДНК, используемая как «транспортное средство» для искусственного переноса генетической информации в клетку. Выделяют множество разновидностей векторов: плазмидные, вирусные, а также космиды, фазмиды, искусственные хромосомы и т.д. Принципиально важно, что векторы (в частности, плазмидные) обладают характерными для них свойствами:

1. Точка начала репликации (ori) - последовательность нуклеотидов, с которой начинается удвоение ДНК. Если векторная ДНК не сможет удваиваться (реплицироваться), то необходимый лечебный эффект не будет достигнут, потому что она просто быстро расщепится внутриклеточными ферментами-нуклеазами, а из-за недостатка матриц будет в итоге образовано гораздо меньше молекул белка. Следует отметить, что эти точки специфичны для каждого биологического вида, то есть если векторную ДНК предполагается получать путём её размножения в культуре бактерий (а не просто химическим синтезом, что обычно гораздо дороже), то потребуются отдельно две точки начала репликации - для человека и для бактерий;

2. Сайты рестрикции - специфические короткие последовательности (чаще палиндромные), которые узнаются специальными ферментами (эндонуклеазы рестрикции) и разрезаются ими определённым образом - с образованием «липких концов» (рис.1).

Рис.1 Образование "липких концов" с участием рестриктаз

Эти сайты необходимы для того, чтобы сшить векторную ДНК (которая, по сути, является «болванкой») с нужными терапевтическими генами в единую молекулу. Такая сшитая из двух или нескольких частей молекула зовётся «рекомбинантной»;

3. Понятно, что нам желательно бы получить миллионы копий рекомбинантной молекулы ДНК. Опять-таки, если мы имеем дело с культурой клеток бактерий, то далее эту ДНК нужно выделить. Проблема заключается в том, что далеко не все бактерии проглотят нужную нам молекулу, некоторые не станут этого делать. Чтобы эти две группы всё-таки различить, в векторную ДНК вставляют селективные маркёры - участки устойчивости к определённым химическим веществам; теперь если в среду добавить эти самые вещества, то выживут только те, которые обладают устойчивостью к ним, а остальные погибнут.

Все эти три составляющие можно наблюдать и в самой первой искусственно синтезированной плазмиде (рис.2).

Рис.2

Сам процесс внедрения плазмидного вектора в определённые клетки называется трансфекцией . Плазмида - это довольно короткая и обычно кольцевая молекула ДНК, которая находится в цитоплазме бактериальной клетки. Плазмиды не связаны с бактериальной хромосомой, они могут реплицироваться независимо от нее, могут выбрасываться бактерией в окружающую среду или, наоборот, поглощаться (процесс поглощения - трансформация ). С помощью плазмид бактерии могут обмениваться генетической информацией, например, передавать устойчивость к определённым антибиотикам.

Плазмиды существуют в бактериях в естественных условиях. Но никто не может помешать исследователю искусственно синтезировать плазмиду, которая будет обладать нужными для него свойствами, вшить в нее ген-вставку и внедрить в клетку. В одну и ту же плазмиду можно вшивать разные вставки .

Методы генной терапии

Существует два основных подхода, различающиеся природой клеток-мишеней:

1. Фетальная, при которой чужеродную ДНК вводят в зиготу (оплодотворённую яйцеклетку) или эмбрион на ранней стадии развития; при этом ожидается, что введённый материал попадёт во все клетки реципиента (и даже в половые клетки, обеспечив тем самым передачу следующему поколению). В нашей стране она фактически запрещена ;

2. Соматическая, при которой генетический материал вводят уже родившемуся в неполовые клетки и он не передаётся половым клеткам.

Генная терапия in vivo основана на прямом введении клонированных (размноженных) и определенным образом упакованных последовательностей ДНК в определённые ткани больного. Особенно перспективным для лечения генных болезней in vivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения лёгочных заболеваний (муковисцидоз, рак легких).

Разработке программы генной терапии предшествует много этапов. Это и тщательный анализ тканеспецифической экспрессии соответствующего гена (т. е., синтеза на матрице гена какого-то белка в определённой ткани), и идентификация первичного биохимического дефекта, и исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола.

Важно, что при составлении схем коррекции генов оценивается эффективность трансфекции, степень исправления первичного биохимического дефекта в условиях клеточных культур (in vitro, "в пробирке") и, что особенно важно, in vivo на животных - биологических моделях. Только после этого можно приступать к программе клинических испытаний .

Прямая доставка и клеточные носители терапевтических генов

Существует множество методов внедрения чужеродной ДНК в эукариотическую клетку: некоторые зависят от физической обработки (электропорация, магнетофекция и т.д.), другие - от применения химических материалов или биологических частиц (например, вирусов), которые используются как переносчики. Сразу стоит оговориться, что обычно комбинируются химические и физические методы (например, электропорация + окутывание ДНК липосомами)

Прямые методы

1. Трансфекция на химической основе может быть классифицирована на несколько видов: с использованием вещества циклодекстрина, полимеров, липосом или наночастиц (с или без химической или вирусной функционализации, т.е. модификации поверхности).
а) Один из самых дешевых методов - использование фосфата кальция. Он повышает эффективность включения ДНК в клетки в 10-100 раз. ДНК образует с кальцием прочный комплекс, что обеспечивает его эффективное поглощение. Недостаток - ядра достигает всего около 1 - 10% ДНК. Метод используется in vitro для переноса ДНК в клетки человека (рис.3);

Рис.3

б) Применение сильноразветвленных органических молекул - дендример, для связывания ДНК и переноса её в клетку (рис.4);

Рис.4

в) Очень эффективным методом для трансфекции ДНК является внедрение её через липосомы - малые, окруженные мембраной тельца, которые могут сливаться с клеточной цитоплазматической мембраной (ЦПМ), представляющая собой двойной слой из липидов. Для эукариотических клеток трансфекция производится эффективнее с применением катионных липосом, потому что клетки к ним более чувствительны. Процесс имеет своё название - липофекция. Этот метод сегодня считается одним из самых безопасных. Липосомы нетоксичны и неиммуногенны. Однако, эффективность переноса генов с помощью липосом ограничена, поскольку внесенная ими ДНК в клетках обычно сразу же захватывается лизосомами и разрушается. Введение ДНК в клетки человека с помощью липосом сегодня является главным при терапии in vivo (рис.5);

Рис.5

г) Еще один метод - использование катионных полимеров, таких как диэтиламиноэтил-декстран или полиэтиленимин. Отрицательно заряженные молекулы ДНК связываются с положительно заряженными поликатионами, и этот комплекс далее проникает в клетку путём эндоцитоза. ДЭАЭ-декстран изменяет физические свойства плазматической мембраны и стимулирует поглощение этого комплекса клеткой. Главный недостаток метода заключается в том, что ДЭАЭ-декстран в высоких концентрациях токсичен. Метод не получил распространения в генотерапии;

д) С помощью гистонов и других ядерных белков. Эти белки, содержащие много положительно заряженных аминокислот (Lys, Arg), в естественных условиях помогают компактно уложить длинную цепь ДНК в сравнительно небольшое ядро клетки.

2. Физические методы:

а) Электропорация - очень популярный метод; мгновенное повышение проницаемости мембраны достигается за счет того, что клетки подвергаются коротким воздействиям интенсивного электрического поля. Показано, что в оптимальных условиях количество трансформантов может достигать 80% выживших клеток. На человеке на сегодняшний день не используется (рис.6).

Рис.6

б) «Cell squeezing» - метод, изобретенный в 2013 г. Он позволяет доставить молекулы в клетки путём "мягкого сдавливания" клеточной мембраны. Метод исключает возможность токсичности или неправильного попадания по мишени, так как он не зависит от внешних материалов или электрических полей;

в) Сонопорация - метод искусственного переноса чужеродных ДНК в клетки с помощью воздействия на них ультразвуком, вызывающим открывание пор в клеточной мембране;
г) Оптическая трансфекция - метод, при котором производится крошечное отверстие в мембране (около 1 мкм в диаметре) при использовании сильносфокусированного лазера;
д) Гидродинамическая трансфекция - метод доставки генетических конструкций, белков и т.д. путем контролируемого повышения давления в капиллярах и межклеточной жидкости, что вызывает кратковременное повышение проницаемости клеточных мембран и образование в них временных пор. Осуществляется быстрой инъекцией в ткань, доставка при этом является неспецифичной. Эффективность доставки для скелетной мышцы - от 22 до 60% ;

е) Микроинъекция ДНК - введение в ядро клетки животных с помощью тонких стеклянных микротрубочек (d=0,1-0,5 мкм). Недостаток - сложность метода, высока вероятность разрушения ядра либо ДНК; можно трансформировать ограниченное число клеток. Не используется для человека.

3. Методы на основе частиц.

а) Прямой подход к трансфекции - генная пушка, при этом ДНК сцепляют в наночастицу с инертными твердыми веществами (чаще золото, вольфрам), которая затем «выстреливает» направленно в ядра клеток-мишеней. Этот метод применяется in vitro и in vivo для введения генов, в частности, в клетки мышечных тканей, например при таком заболевании, как миодистрофия Дюшена. Размеры частиц золота - 1-3 мкм (рис.7).

Рис.7

б) Магнитофекция - метод, использующий силы магнетизма для доставки ДНК в клетки-мишени. Сначала нуклеиновые кислоты (НК) ассоциируются с магнитными наночастицами, а далее, под действием магнитного поля, частицы загоняются в клетку. Эффективность почти 100%-ная, отмечена явная нетоксичность. Уже через 10-15 мин частицы регистрируются в клетке - это гораздо быстрее других методик.
в) Импалефекция (impalefection; "impalement", букв. "сажание на кол" + "infection") - метод доставки с применением наноматериалов, таких как углеродные нанотрубки и нановолокна. При этом клетки буквально протыкаются подстилкой из нанофибрилл . Приставка «нано» применяется для обозначения их очень маленьких размеров (в пределах миллиардных долей метра) (рис.8).

Рис.8

Отдельно стоит выделить такой метод, как РНК-трансфекция: в клетку доставляется не ДНК, а молекулы РНК - их «преёмники» в цепи биосинтеза белка; при этом активизируются специальные белки, разрезающие РНК на короткие фрагменты -- т.н. малые интерферирующих РНК (миРНК). Эти фрагменты связываются с другими белками и, в конце концов, это приводит к угнетению экспрессии клеткой соответствующих генов. Таким образом можно заблокировать в клетке действие тех генов, которые потенциально на данный момент приносят больше вреда, чем пользы. Широкое применение РНК-трансфекция нашла, в частности, в онкологии.

Основные принципы доставки генов с использованием плазмидных векторов рассмотрены. Теперь можно перейти к рассмотрению вирусных методов. Вирусы - это неклеточные формы жизни, чаще всего представляющие собой молекулу нуклеиновой кислоты (ДНК или РНК), обёрнутой в белковую оболочку. Если вырезать из генетического материала вируса все те последовательности, которые вызывают возникновение заболеваний, то весь вирус также можно успешно превратить в «транспортное средство» для нашего гена.

Процесс внедрения ДНК в клетку, опосредованное вирусом, называется трансдукцией .
На практике чаще всего используют ретровирусы, аденовирусы и аденоассоциированные вирусы (AAV). Для начала стоит разобраться, каким должен быть идеальный кандидат для трансдукции среди вирусов. Критерии таковы, что он должен быть:

Стабилен;
. ёмок, то есть вмещать достаточное количество ДНК;
. инертным в отношении метаболических путей клетки;
. точным - в идеале, должен встраивать свой геном в конкретный локус генома ядра хозяина и др.

В реальной жизни очень сложно скомбинировать хотя бы несколько пунктов, так что обычно выбор происходит при рассмотрении каждого индивидуального случая в отдельности (рис.9).

Рис.9

Из всех трёх перечисленных наиболее используемых вирусов самыми безопасными и одновременно самыми точными являются AAV. Их почти что единственный недостаток - сравнительно малая ёмкость (ок. 4800 п.н.), которая, однако, оказывается достаточной для многих генов .

Помимо перечисленных методов достаточно часто генная терапия применяется в комбинации с клеточной: при этом сначала в питательную среду высаживают культуру определённых клеток человека, после этого тем или иным способом внедряют в клетки нужные гены, некоторое время культивируют и снова пересаживают в организм хозяина. В результате клеткам можно вернуть их нормальные свойства. Так, к примеру, модифицировали белые клетки крови человека (лейкоциты) при лейкемии (рис.10).

Рис.10

Судьба гена после его попадания в клетку

Так как с вирусными векторами всё более-менее ясно в силу их свойства более эффективно доставлять гены до конечной цели - ядра, то остановимся на судьбе плазмидного вектора.

На данном этапе мы добились того, что ДНК прошла первый большой барьер - цитоплазматическую мембрану клетки.

Далее, в комплексе с другими веществами, оболочкой или без, ей необходимо достигнуть клеточного ядра, чтобы специальный фермент - РНК-полимераза - синтезировала молекулу информационной РНК (иРНК) на матрице ДНК (этот процесс называется транскрипция ). Только после этого иРНК выйдет в цитоплазму, образует комплекс с рибосомами и согласно генетическому коду синтезируется полипептид - например, фактор роста сосудов (VEGF), который начнёт выполнять определённую терапевтическую функцию (в данном случае - запустит процесс образования ветвлений сосудов в ткани, подверженной ишемии).

Что касается экспрессии введенных генов в требуемом типе клеток, то эта задача решается с помощью регуляторных элементов транскрипции. Ткань, в которой происходит экспрессия, часто определяется комбинацией специфичного для этой ткани энхансера («усиливающей» последовательности) с определенным промотором (последовательность нуклеотидов, с которой РНК-полимераза начинает синтез), который может быть индуцируемым . Известно, что активность генов можно модулировать in vivo внешними сигналами, а так как энхансеры могут работать с любым геном, то в вектора можно вводить еще инсуляторы, которые помогают энхансеру работать независимо от его положения и могут вести себя как функциональные барьеры между генами. Каждый энхансер содержит набор участков связывания активирующих или супрессирующих белковых факторов . С помощью промоторов можно также регулировать уровень экспрессии генов. Например, есть металлотионеиновые или температурочувствительные промоторы; промоторы, управляемые гормонами.

Экспрессия гена зависит от его положения в геноме. В большинстве случаев существующие вирусные методы приводят лишь к случайному встраиванию гена в геном. Чтобы исключить такую зависимость, при конструировании векторов снабжают ген известными нуклеотидными последовательностями, которые позволяют гену экспрессироваться независимо от места его встраивания в геном.

Наиболее простой путь регуляции экспрессии трансгена - это обеспечение его индикаторным промотором, который чувствителен к физиологическому сигналу, такому, как выделение глюкозы или гипоксия. Такие «эндогенные» контролирующие системы могут быть полезны в некоторых ситуациях, таких, как осуществление глюкозозависимого контроля продукции инсулина. Более надежны и универсальны «экзогенные» системы контроля, когда экспрессия гена контролируется фармакологически введением маленькой лекарственной молекулы. В настоящее время известны 4 основные системы контроля - регулируемые тетрациклином (Tet), стероидом насекомых, экдизоном или его аналогами, антипрогестиновым препаратом майфпристоном (RU486) и химическими димеризаторами, такими, как рапамицин и его аналоги. Все они включают лекарственно зависимое привлечение домена активации транскрипции к основному промотору, ведущему нужный ген, но отличаются по механизмам этого привлечения .

Заключение

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже известные и испытанные in vivo и in vitro векторные системы далеки от совершенства . Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем - стабильность интеграции, регулируемая экспрессия, безопасность - все еще нуждаются в серьезных доработках.

Прежде всего, это касается стабильности интеграции. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительному пребыванию внутри ядер). В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих. Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Генная и клеточная терапия открывает блестящие перспективы для восстановления утраченных клеток и тканей и генно-инженерного конструирования органов, что, несомненно, существенно расширит арсенал методов для медико-биологических исследований и создаст новые возможности для сохранения и продления жизни человека .

Рынок генной терапии имеет все шансы стать самым быстрорастущим рынком в мире в ближайшие 10 лет. Перспективы, которые открывают генетические манипуляции мотивируют представителей Большой Фармы не только вести собственные исследования, но и активно скупать наиболее многообещающие компании.

Фармгигант Novartis, судя по всему, может положить начало широкому внедрению генной терапии в мировую клиническую практику: управление по санитарному надзору за качеством пищевых продуктов и медикаментов (Food and Drug Administration, FDA) одобрило использование генной терапии для пациентов в возрасте от 3 до 25 лет, страдающих острым лимфобластным лейкозом.

Лечение помогает достигнуть ремиссии, а в некоторых случаях даже победить заболевание. СМИ уже справедливо окрестили это событие «новой эрой медицины» - человечество при помощи генетических манипуляций постепенно справляется с неизлечимыми ранее заболеваниями.

Вспомним, что привело к началу «новой эры» и посмотрим, куда движется один из самых многообещающих рынков.

С чего всё начиналось

Примерно 15 лет назад учёным удалось «прочитать» геном и наконец-то получить доступ к «исходному коду» человеческого организма, который хранит в себе все необходимые данные о нём, а главное - контролирует его жизнь и смерть. Ещё несколько лет потребовалось на то, чтобы осмыслить полученные знания и постепенно начать транслировать их в область практического применения: сначала в диагностическую, а затем и в клиническую практику.

За последние 100 лет справляться с возбудителями различных заболеваний, вроде вирусов и бактерий, наука научилась довольно хорошо - спасибо вакцинам и антибиотикам, - но недуги, вызванные мутациями в генах, долгое время считались неизлечимыми. Поэтому расшифровка более 3 млрд пар нуклеотидов открыла поистине неограниченные перспективы для развития «медицины будущего» - в первую очередь превентивной генетической терапии, а, в идеале, медицины полностью персонализированной.

Рыночные эксперты предрекают этим областям бурный рост: рынок генной терапии рака прогнозируется в $4 млрд к 2024 году, рынок генной терапии в целом - в $11 млрд к 2025, а прогнозы для всей персонализированной медицины ещё более оптимистичны: от $149 млрд в 2020 году до $2,5 трлн к 2022.

Первыми плодами расшифровки человеческого генома стало усовершенствование диагностики врожденных заболеваний или предрасположенности к ним (многие вспомнят случай с геном BRCA1 и Анджелиной Джоли). На этом фоне начал стремительно развиваться рынок так называемой «потребительской генетики» - , что к 2020 году он вырастет до $12 млрд.

Генетические тесты дают пациенту возможность провести анализ и найти «плохие гены» в своём организме или, наоборот, возрадоваться их отсутствию. Изначально довольно дорогое удовольствие ($999–2500) становилось всё более доступным по мере уменьшения стоимости секвенирования. Например, цена комплексного исследования, которое предлагает сегодня один из лидеров мирового рынка, компания 23andMe, составляет $199. В России цены несколько выше: от 20 000 до 30 000 рублей.

Помимо этого, реальностью становится таргетная терапия, которая особенно важна не только для наследственных заболеваний, но и для сердечно-сосудистых и инфекционных болезней, а также онкологии - ведущих причин смерти по всему миру . Генетические манипуляции позволяют ввести пациенту «хорошие» гены, чтобы компенсировать проблемы, вызванные халтурной работой генов «плохих» - например, как в случае с гемофилией , а в будущем позволят и «ремонтировать» или полностью удалять вредоносные гены - например, те, что вызывают нейродегенеративную болезнь Гентингтона . Пока генная терапия занимает на фармацевтическом рынке весьма скромное место, но её доля обязательно будет неуклонно расти.

Конечно, остаётся множество проблем, которые требуют решения: это и высокий риск иммунных реакций, высокая стоимость терапии и, быть может, даже этические вопросы, связанные с внесением изменений в человеческий организм на генетическом уровне. Однако подобные манипуляции - шанс для пациентов, болезни которых либо признаны неизлечимыми, либо не поддаются эффективной терапии при помощи существующих лекарств, а также новое оружие в борьбе против старения, дающее человечеству надежду на здоровое долголетие на совершенно ином уровне, а рынку - новые, куда более многообещающие пути для развития.

Первые победы

Эта программа начинает действовать ещё с момента полового созревания и медленно, но неумолимо приводит к смерти. Причём это достаточно регламентированный процесс. У каждого вида наблюдается четкий лимит жизни, который ему отпущен. У мыши, например, - это, в среднем, 2,5 года, у человека - примерно 80 лет. При этом есть другие грызуны, живущие в разы или даже на порядок дольше мышей - например, белки или знаменитый голый землекоп.

Главный вопрос заключается в том, можно ли старение отключить или хотя бы замедлить. Возможно, ответить на этот вопрос поможет революционная технология, обращающая клеточное развитие вспять, которую открыл Синъя Яманака, профессор Института передовых медицинских наук в Университете Киото: он установил, что индукция совместной экспрессии четырёх факторов транскрипции (Oct4, Sox2, Klf4 и c-Myc, а все вместе - OSKM, или факторы Яманаки), которые тесно связаны с основными этапами жизненного цикла клетки, превращает соматические клетки обратно в плюрипотентные. За это поистине революционное открытие в 2012 году Яманака получил Нобелевскую премию.

Используя прорыв Яманаки, группа учёных из Института Солка под руководством Хуана Карлоса Исписуа Бельмонте (Juan Carlos Izpisua Belmonte) попыталась применить этот природный механизм обнуления биологических часов для продления жизни взрослых животных. И не ошиблась. При помощи факторов Яманаки им удалось подтвердить гипотезу о возможности отката «эпигенетических часов», то есть омоложения клеток, и увеличить среднюю продолжительность жизни быстростареющим мышам на 33%-50% по сравнению с различными контрольными группами.

Знаете ли вы, что в нашей стране есть препарат для генной терапии? Этот препарат успешно лечит распространенное возрастное заболевание, он прошел клинические испытания и с 2012 года продается на территории России. И сам препарат - отечественный, причем единственный в своем роде, аналогов в мире нет. Типичная реакция человека, который слышит об этом впервые: «Да ладно, не может такого быть». Не может, но бывает. Рассказать читателям о препарате, получившем название «Неоваскулген», мы попросили кандидата медицинских наук Романа Вадимовича Деева, директора по науке .

Идея и воплощение

Идея применения плазмидных генных конструкций для индукции роста сосудов в терапевтических целях, конечно, принадлежит не Институту стволовых клеток человека. История вопроса насчитывает как минимум два десятка лет - пионерами здесь были доктор Джеффри Иснер с соавторами (США), которые провели пилотное исследование, сначала на одной пациентке, потом на трех, и опубликовали результаты в середине 90-х. В этом отношении мы шли по их следам, но конкретная разработка, положенная в основу препарата, российская. Плазмидную конструкцию, содержащую ген фактора роста сосудов, создали и в 2007 году запатентовали два специалиста: хорошо знакомый читателям «Химии и жизни» доктор биологических наук, профессор С. Л. Киселев (Институт биологии гена РАН, Институт общей генетики им. Н. И. Вавилова) и доктор биологических наук, профессор А. В. Иткес (Российский университет дружбы народов).

Однако не каждая идея, сколь угодно красивая и теоретически верная, воплощается в жизнь. В первую очередь это касается медицины, отрасли по необходимости консервативной, где всегда актуально утверждение «лучшее - враг хорошего». Первый вопрос, который мы задали себе, прежде чем начать работу: существует ли непреодоленная проблема, которую можно решить с помощью этой плазмиды? Где она может быть нужна и нужна ли вообще?

Атеросклероз сосудов - это сужение просвета артерий из- за отложений холестерина и других веществ, которое может приводить к ишемии - нарушению кровоснабжения органов и тканей. У всех на слуху ишемическая болезнь сердца - одна из основных причин смертности в мире: атеросклероз коронарных артерий приводит к поражению сердечной мышцы, возможные следствия - стенокардия или инфаркт. Но начинать наше исследование с ишемической болезни сердца нам не хотелось. Решением этой проблемы активно и достаточно успешно занимаются хирурги, существует множество фармацевтических средств разных групп, которые поддерживают миокард. Конечно, о победе над инфарктом пока не приходится говорить, и всё же это не та область, где новый препарат был бы воспринят с энтузиазмом.

Мы стали думать, какие еще ишемические заболевания имеют существенное социальное значение, и вспомнили термин, знакомый каждому студенту-медику: «перемежающаяся хромота» - симптом ишемии сосудов нижних конечностей. Сужение сосудов не пропускает кровь к мышцам - кожа ног становится сухой, ступни мерзнут, после продолжительной ходьбы начинаются боли в ногах, вынуждающие человека остановиться и отдохнуть. Звучит вроде бы нестрашно, однако эта проблема не менее значима, чем ишемия миокарда. А возможно, и более, потому что ей уделяют куда меньше внимания и разработчики диагностических средств, и фармацевтические компании, и социальные органы. Между тем боли после долгой ходьбы - лишь начало. Ишемия неизбежно будет прогрессировать, безболевая дистанция сократится от километра (что считается уже клинической стадией болезни) до 200 м и менее, затем начнутся боли в покое, а далее - язвенно-некротические изменения тканей и в перспективе ампутация из-за гангрены.

Сегодня врачи говорят о пандемии атеросклероза, и Россию эта пандемия не обошла стороной. Факторы риска для этой болезни хорошо известны: курение и алкоголь, недостаток физической активности, несбалансированное питание, стрессы. Риск выше для гипертоников, людей с избыточным весом, страдающих диабетом, для тех, у кого повышен уровень холестерина и особых липопротеинов в крови. Существует наследственная предрасположенность к атеросклерозу: о ней говорят, если у больного имеются кровные родственники-мужчины, умершие от инфаркта или инсульта до 55 лет, и женщины - до 65 лет. Мужчины более предрасположены к раннему развитию атеросклероза, чем женщины, и для всех риск увеличивается с возрастом.

Хронической ишемией нижних конечностей (ХИНК) во всем мире страдают около двухсот миллионов человек. Существует статистика по этому заболеванию в США, в странах Европы и Юго-Восточной Азии. Данные по России тоже имеются, но весьма приблизительные. Помимо проблем со сбором, обработкой и распространением информации, есть и объективные сложности. Допустим, инфаркт миокарда во всех статистических отчетах пишется отдельной строчкой, подсчитывать случаи просто. Но как учитывать ХИНК? На ранних стадиях пациенты зачастую не обращаются к врачам. Если же учитывать поздние случаи, с некрозом и ампутациями, то не всегда возможно отделить те случаи, где причиной ампутации был, например, диабет или травмы. Вообще говоря, этот раздел статистики достаточно печален. Подсчитано, что только в США в год выполняется около 150 тысяч ампутаций. В нашей стране, по оценкам врачей-экспертов, - от 45 тысяч до 150 тысяч в год, с учетом состояния здравоохранения и культуры заботы о своем здоровье.

По приблизительным данным, ежегодно в России около 300 тысяч человек получают диагноз «хроническая ишемия нижних конечностей». Как правило, это люди в возрасте 55–60 лет и старше, но бывают и ранние случаи. Мы считаем, что всего в стране живут от миллиона до двух миллионов граждан с этим заболеванием. Прогноз для них неблагоприятный. Если говорить о наиболее тяжелых стадиях, третьей и четвертой (боли в покое и некрозы), то в течение года после постановки диагноза приблизительно четверть их умирает из-за прогрессирования атеросклероза, в том числе в других анатомических регионах; четверть переживает ампутацию, у четверти поражение сосудов ног прогрессирует, и только у четверти современная медицина может добиться хоть какой-то стабилизации.

Те же и плазмида

Что может сделать для таких людей сосудистая хирургия? Самый простой вариант - механически исправить сосуды: заменить проблемный участок протезом либо создать путь для обходного кровотока. Но во-первых, приблизительно у четверти пациентов анатомическое строение сосудов таково, что сделать хирургическую реконструкцию невозможно. Во-вторых, атеросклероз не всегда поражает крупные сосуды - это могут быть и артерии ниже щели коленного сустава, в голени. Диаметр сосудов там небольшой, и велика вероятность, что хирургическая операция не даст желаемого результата из-за тромбирования шунтов, разрастания эндотелия и т. д. Специалисты открыто признают, что сосудистая хирургия всех проблем в этой области не решает.

Когда не может помочь хирургия, остается медикаментозное воздействие. Но фармакология тоже не предлагает чудо-лекарства. Стандартная терапия таких пациентов подразумевает назначение препаратов, улучшающих реологические свойства крови, расслабляющих тонус сосудистой стенки. Когда ишемия становится критической, переходит из второй стадии в третью и далее - в четвертую, добавляют препараты группы простагландинов, которые расширяют мелкие сосуды. Кровь туда «проваливается», кровоснабжение тканей улучшается, и худшего удается избежать. Но каждые полгода эту терапию приходится повторять - до тех пор, пока сосуды реагируют на простагландины.

Кроме того, в Европе и в Соединенных Штатах зарегистрирован препарат цилостазол. Хотя механизм его действия не совсем понятен, но то, что он улучшает периферический кровоток, показано достоверно. Цилостазол рекомендован к применению в Европе и в США, у нас же ситуация своеобразная: препарат упомянут в «Национальных рекомендациях по ведению пациентов с заболеваниями периферических артерий», но пока не разрешен к применению на территории РФ. Кроме того, Европейское медицинское агентство в марте 2013 года выпустило пресс-релиз, в котором говорилось о побочных эффектах цилостазола, связанных с нарушением работы сердца. Теперь противопоказанием к применению считается хроническая сердечная недостаточность. А это сильно ограничивает и его применение у пациентов с ишемией нижних конечностей: сердечников среди них много, атеросклероз - явление системное.

Рассмотрев эту ситуацию, мы решили, что действие, которое разработчики предполагали для плазмидной конструкции с геном VEGF, - ангиогенез, создание de novo сосудов микроциркуляторного русла, - может оказаться полезным. Естественно, мы не делали пафосных заявлений о победе над ишемией. Наш препарат не лечит от атеросклероза, но он восстанавливает кровообращение там, где оно нарушено, и позволяет крови добраться до обедненных кислородом и питательными веществами клеток и тканей.

Медицинское сообщество, как я уже упоминал, достаточно консервативно, хирургическое - в особенности. Мы понимали, что за нашу правоту придется побороться. Неоваскулген был зарегистрирован в 2011 году, и с тех пор мы ведем разъяснительную работу - ездим по стране, проводим конференции и симпозиумы, общаемся с докторами, рассказываем им о препарате, что-то корректируем и в наших представлениях с учетом того, что узнаем от них. В принципе, сейчас начинается самое интересное. Позади клинические исследования, которые подтвердили безопасность и эффективность препарата для значительной части пациентов. Результаты говорили сами за себя (подробнее о них чуть позже), они были убедительны для экспертов, а мнение экспертов убедило официальных лиц. Стало понятно, что ангиогенная терапия как самостоятельный элемент комплексного лечения имеет право на существование, и началась тонкая, почти ювелирная работа - подгонка препарата под конкретные клинические ситуации: нужно было понять, кому он показан в первую очередь, когда его следует назначать в сочетании с хирургической реконструкцией, с препаратами других фармакологических групп.

Сегодня в мире разрешено к клиническому применению всего пять генных препаратов: три для лечения злокачественных новообразований, четвертый - глибера, для лечения редкого наследственного заболевания - дефицита липопротеинлипазы, и наш неоваскулген. Необходимо понимать, что генная терапия бывает разной. Лечение наследственных заболеваний предполагает мощную долговременную коррекцию нарушений в геноме. Так действует глибера и другие подобные ей препараты, которые еще не вышли на рынок, но в скором времени, вероятно, появятся. Нам же требуется лишь временная индукция ангиогенеза - наша генетическая конструкция работает в клетках от суток до 10–14 дней, запускает процесс роста сосудов и затем исчезает. Ни о каком «вмешательстве в геном», конечно, говорить не приходится.

Именно поэтому препарат вводят местно, в те участки, где необходимо вырастить новые сосуды. За рубежом пытались вводить похожие конструкции внутривенно и внутриартериально, но особого смысла в этом не было: при контакте с кровью препарат быстро разрушался. Это и хорошо, потому что обеспечивает безопасность: плазмида не может попасть в другие отдаленные участки организма и не запустит процесс ангиогенеза там, где он нежелателен.

Что касается генно-терапевтических препаратов для лечения хронической ишемии нижних конечностей, пока на рынке есть только неоваскулген, но через некоторое время могут появиться и другие. Сошла с дистанции компания «Sanofi-Aventis», спонсировавшая клинические испытания плазмидной конструкции с геном фактора роста фибробластов. Фибробласты участвуют в созревании сосуда - собираются вокруг трубочки эндотелия и формируют прочную стенку, но это уже не инициация процесса, а следующий этап. Начинать с подстегивания фибробластов было рискованной идеей, и она не увенчалась успехом. Однако в мире проводится еще не менее десятка исследований в этой области, часть их перешла со второй на третью фазу клинических испытаний. Достаточно удачно японские ученые завершили исследование своего препарата. Это плазмида, похожая на нашу, но в качестве терапевтического фактора в ней использован ген фактора роста гепатоцитов HGF (гепатоциты - клетки печени, но в данном случае этот белок, несмотря на название, стимулирует рост того же эндотелия сосудов). У себя в Японии они успешно завершили третью фазу, однако не стали регистрировать, производить и продавать препарат, нашли инвестиции, чтобы организовать клинические испытания в США и вместо небольшого рынка внутри страны пойти на глобальный.

Как это работает

Активное вещество неоваскулгена - плазмида, то есть замкнутая в кольцо молекула ДНК. Производят ее биотехнологическим методом: клетки кишечной палочки Escherichia coli , живущие в биореакторе, многократно копируют плазмиду, затем ее выделяют и очищают. Плазмида содержит человеческий ген vegf , который кодирует белок - эндотелиальный фактор роста сосудов (VEGF - vascular endothelial growth factor; эндотелий здесь - выстилка сосудов, их внутренний слой). У этого белка есть несколько изоформ, в данном случае используется VEGF165, состоящий из 165 аминокислот. Показано, что именно такой белок наиболее мощно стимулирует деление сосудистых клеток.

Препарат вводят пациенту в больную ногу несколькими уколами. Плазмида проникает в клетки ишемизированной ткани, которые начинают синтезировать белок по «чертежу» гена. Не вся ДНК окажется внутри клеток, но повода для беспокойства тут нет: время жизни этой плазмиды в организме вне клетки - десятки минут, потом ее разрушат ферменты, так что генетическая конструкция не попадет ни в какие другие органы и ткани, ее действие будет только местным.

Клетки начинают синтезировать и выделять VEGF165. Он проникает в сосудистое русло и связывается с рецепторами эндотелиальных клеток. Это команда: «Начинаем выращивать здесь новый сосуд». Клетки активно делятся, мигрируют в сторону ишемизированной ткани и начинают формировать новую трубочку сосуда, обходной путь для крови. Это не менее сложный процесс, чем строительство новой дороги: необходимо организовать съезд с основной магистрали, расчистить трассу, то есть растворить плотные ткани на пути сосуда. Разумеется, трубочка, состоящая из эндотелиальных клеток, должна еще одеться снаружи мышечным слоем и волокнами соединительной ткани. В итоге кровоток восстановлен, ткани снова полноценно снабжаются кислородом и питательными веществами - ишемия отступает.

Результаты

Наш препарат прошел все этапы клинических испытаний. В российских нормативных документах они не называются «тремя фазами», но смысл от этого не меняется: первый этап - оценка безопасности, второй этап - определение режима дозирования, наиболее частых побочных действий, первые данные об эффективности, и третий - точное определение эффективности и более редкие побочные эффекты и осложнения. Три организации, в которых проводились клинические испытания, - это Российский научный центр хирургии имени Б. В. Петровского, Рязанский государственный медицинский университет и Ярославская областная клиническая больница.

Для первого этапа обычно привлекают здоровых молодых добровольцев. Однако в нашем случае это было бы неэтично, поскольку речь все-таки шла о генной терапии. В этом вопросе у нас было полное согласие с представителями контролирующего органа (на тот момент, в 2009 году, это была Федеральная служба по надзору в сфере здравоохранения, теперь же функция регистрации лекарственных препаратов передана непосредственно в Минздрав): здоровым людям генную конструкцию вводить не стоит, нужно совместить первый этап с началом второго и проводить оценку безопасности уже на пациентах. В таком решении не было ничего необычного: во всем мире сильнодействующие препараты, например те, что используют в психиатрии, на здоровых добровольцах не тестируют.

Препарат испытывали при второй и третьей стадии ХИНК по общепринятой классификации А. В. Покровского-Фонтейна. Стадия 2а - пациент может пройти около километра, а дальше начинаются боли. Уже на этой стадии в метаболизме мышечных волокон происходят необратимые изменения. Стадия 2б - безболевая дистанция 200 метров и менее, а третья стадия, когда говорят уже о критической ишемии нижних конечностей - боли в покое, при сидении и лежании. При этих же стадиях сейчас показано применение неоваскулгена - то есть практически при всех, за исключением первой, бессимптомной, когда пациент даже не знает, что болен, и четвертой, некротической, когда образуются язвы и гангрены. Впрочем, бывали случаи, когда доктора назначали препарат и на четвертой стадии как терапию отчаяния, закрывая глаза на инструкции. Потому что эффект превосходил наши самые оптимистические предположения.

Доктора, принимавшие участие в клинических испытаниях, как правило, начинали их с колоссальным скепсисом. Многоопытному хирургу, перевидавшему десятки, если не сотни тяжелых пациентов, прекрасно представляющему и все возможности терапии, и прогнозы, предлагают сделать больному какие-то инновационные уколы - реакцию нетрудно представить. А потом проходят две недели, раздается звонок, и доктор говорит: «У меня пациент бросил костыли и самостоятельно поднимается на третий этаж». Такая история произошла в Ростове-на-Дону, где проверяли эффективность препарата под руководством доктора медицинских наук, профессора Ростовского государственного медицинского университета Ивана Ивановича Кательницкого. Сейчас мы зарегистрировали препарат и на Украине, где врачи его встретили не с меньшим, а возможно, и с большим недоверием, чем их российские коллеги. Недавно я получил от одного из них электронное письмо с заголовком: «Это бомба!» - настолько он был изумлен результатом.

Сразу отмечу, что чудесные истории, к сожалению, происходят не с каждым больным. Как и для любого лекарственного средства, есть категория пациентов, которые не отвечают на терапию неоваскулгеном. Мы пытаемся разобраться, почему так происходит и что тут можно исправить. Кроме того, далеко не все пациенты страдают только атеросклерозом: у кого-то он протекает на фоне диабета, или у кого-то развивается тромбангиит (болезнь Бюргера), и это, конечно, ухудшает результат. Приблизительно 15% больных реагируют на лечение не так, как бы мы хотели, - очень и очень незначительно. Однако есть четкая положительная тенденция, и даже можно отметить, что чем тяжелее ишемия, тем ярче выражен клинический эффект. Некоторых больных мы наблюдаем уже два-три года. Коллеги из Ярославля (И. Н. Староверов, Ю. В. Червяков) подвели статистику по четырем годам - мы видим, что пациент, который с трудом мог пройти 50 метров, через два года отправляется на дальние прогулки, безболевая дистанция выросла до трех километров. Был примечательный случай и на ранней стадии: пациента, страстного охотника, не устраивали боли в ногах после первого километра, и он сам приобрел препарат. Сейчас этот человек охотится на лося, проходит в быстром темпе многие километры.

В рамках клинического исследования пациенты заполняли опросники, позволяющие оценить изменения в качестве жизни. Там было несколько шкал, которые сводились к двум компонентам: физическому здоровью и психологическому благополучию. Выяснилось, что физический компонент улучшается с очень хорошей достоверностью, это видно на примере той же дистанции безболевой ходьбы. А вот психологические улучшения, хотя и были отмечены, не достигли статистически значимой разницы. Может быть, дело в том, что после долгой ходьбы ноги всё равно начинают болеть, а хочется, чтобы не болели совсем, а может, людям трудно поверить в хорошее после тяжелой болезни и мрачных перспектив, или всему виной российская ментальность, о которой так много говорят. Любопытно было бы сравнить результаты по этому показателю в других странах.

Цена вопроса

Сколько стоит препарат, во что обойдется лечение? Препарат, увы, дорогой. Точные цены в статье приводить нет смысла, проще посмотреть в Интернете, но настраиваться надо на сумму порядка ста тысяч рублей за одну упаковку. Если учесть, что курс простагландинов стоит в среднем около 40 тысяч рублей и повторять его нужно каждые полгода, а эффект от неоваскулгена сохраняется и даже усиливается минимум два-три года, то картина не такая пессимистическая. Но все-таки почему так дорого?

Вот что говорит по этому поводу наш генеральный директор, непосредственный руководитель данного направления А. А. Исаев: «Неоваскулген - первый в классе препарат, что означает большие инвестиции: годы исследований, непростая работа с регуляторами и врачами, огромные усилия по созданию производства для выпуска на рынок. А на выходе небольшие количества доз препарата, пока его применение не станет широкой практикой. Отсюда и высокая цена на оригинальные разработки в сравнении с их копиями и так называемыми дженериками. Цена, уникальность и широкое применение тесно связаны. Поэтому наша задача - не только разработать препарат, но и сделать его доступным для всех. Мы много работаем над этим».

С нашей точки зрения, желательный вариант развития событий - включение неоваскулгена в перечень лекарственных средств, которые могут быть закуплены за счет федерального или регионального бюджета и предоставлены пациентам, нуждающимся в таком лечении. Подобное решение экономически обоснованно: как ни странно, пациент с одной ногой или вообще без ног обходится государству дороже, чем покупка препарата, который позволит избежать ампутации. Некоторую надежду дает и то, что неоваскулген официально является «инновационным препаратом», то есть включен в соответствующие списки как приоритетный и заслуживающий поддержки со стороны государства.

Понятно, что себестоимость неоваскулгена не может быть совсем уж низкой. Выращивание E. coli в биореакторе, манипуляции с ней, выделение и очистка плазмиды, подготовка лекарственной формы, контроль качества - всё это труд квалифицированного персонала, дорогостоящие приборы и реактивы. Но интересно, что себестоимость только производственной части в России примерно в восемь раз выше, чем если бы то же самое делалось, допустим, в Израиле. Причина проста: и оборудование, и расходные материалы - всё это у нас импортное, что и увеличивает затраты. Кроме того, вложения в клинические испытания, в обучение врачей, нужно постепенно окупить. Есть свои интересы и у нашего дистрибьютора, компании «Сотекс», - это одна из компаний, входящих в известную на фармацевтическом рынке группу «Протек». Их работа тоже необходима, это они поставляют препарат в регионы, чтобы он был доступен не одним столичным жителям.

Мы, со своей стороны, предпринимаем все усилия для того, чтобы препарат подтвердил свою эффективность в ходе широкого применения, - ежемесячно проводим выездные мероприятия, встречи, круглые стол, общаемся с врачами, отвечаем на вопросы. Глядя на карту РФ, я уже могу назвать специалистов по сосудистой хирургии в каждом регионе. Нельзя сказать, чтобы это был парад единодушия, - у каждого практикующего врача свой опыт и свое отношение к показаниям и противопоказаниям. Но о препарате знают, его применяют, и это для нас главное. Когда есть результаты и они убедительны для экспертного сообщества в конкретном регионе, разговаривать с чиновниками уже проще. Если всё сложится удачно, в арсенале сосудистых хирургов вскоре появится новый полезный инструмент.