Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

2.1 Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох . Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1 . В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3 . Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n -го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом .


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта) .

2.2 Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n -мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z [i] * Z [i] + C ,

где Z i и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z [i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z [i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z [i] оставалась внутри окружности, можно установить цвет точки C (если Z [i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

2.3 Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

  • множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины;
  • треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости;
  • губка Менгера - аналог множества Кантора в трёхмерном пространстве;
  • примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции ;
  • кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
  • кривая Пеано - непрерывная кривая, проходящая через все точки квадрата;
  • траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум [ ] .

Рекурсивная процедура получения фрактальных кривых

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости: Ψ : K ↦ ∪ i = 1 n ψ i (K) {\displaystyle \Psi \colon K\mapsto \cup _{i=1}^{n}\psi _{i}(K)}

Можно показать, что отображение Ψ {\displaystyle \Psi } является сжимающим отображением на множестве компактов с метрикой Хаусдорфа . Следовательно, по теореме Банаха , это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения ψ i , i = 1 , … , n {\displaystyle \psi _{i},\,i=1,\dots ,n} - отображения подобия, а n {\displaystyle n} - число звеньев генератора.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления z n {\displaystyle z_{n}} к бесконечности (определяемой, скажем, как наименьший номер n {\displaystyle n} , при котором | z n | {\displaystyle |z_{n}|} превысит фиксированную большую величину A {\displaystyle A} ).

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики , например, в модели Изинга и перколяции .
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

Природные объекты, обладающие фрактальными свойствами

Природные объекты (квазифракталы ) отличаются от идеальных абстрактных фракталов неполнотой и неточностью повторений структуры. Большинство встречающихся в природе фракталоподобных структур (границы облаков, линия берега, деревья, листья растений, кораллы , …) являются квазифракталами, поскольку на некотором малом масштабе фрактальная структура исчезает. Природные структуры не могут быть идеальными фракталами из-за ограничений, накладываемых размерами живой клетки и, в конечном итоге, размерами молекул .

  • В живой природе:
    • Морские звезды и ежи
    • Цветы и растения (брокколи , капуста)
    • Кроны деревьев и листья растений
    • Плоды (ананас)
    • Система кровообращения и бронхи людей и животных
  • В неживой природе:
    • Границы географических объектов (стран, областей, городов)
    • Морозные узоры на оконных стёклах
    • Сталактиты , сталагмиты , геликтиты .

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии -адсорбции , пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании

Cтраница 1


Теория фракталов позволяет с единых позиций решить задачу описания всей иерархии структурных уровней в сложных материалах. Более подробно эти вопросы рассматриваются в гл.  

Теория фракталов позволяет одним параметром однозначно охарактеризовать структуру ячеистого композита на микроуровне.  

Теория фракталов в существующем виде предназначена главным образом для описания процессов структурообра - зования в самом обобщенном смысле. Имеющиеся отдельные работы по использованию ее методов в механике разрушения посвящены проблемам трещиностойкости и кинетики разрушения и связаны с представлениями об агрегации системы растущих трещин во фрактальные кластеры. При этом рассматриваются в основном гомогенные среды и материалы. Использование такого подхода для описания прочности пористых случайно - неоднородных композиционных материалов в настоящее время весьма проблематично.  

В теории фракталов используется понятие кластера для описания объекта, состоящего из большого числа твердых частиц, жестко связанных между собой, и имеющего рыхлую и ветвистую структуру. Фрактальный кластер отличается от нефрактального тем, что он обладает свойством самоподобия. Понятие фрактального кластера универсально и поэтому применимо к системам различной природы. Обширная информация о свойствах фрактальных кластеров получена при изучении их поведения путем компьютерного моделирования с использованием различных моделей формирования кластеров.  

Методы теории фракталов, как правило, применяются в самых сложных разделах теоретической физики - квантовой теории поля, статистической физике, теории фазовых переходов и критических явлений. Цель монографии - показать, что идеи н методы теории фракталов могут быть эффективно использованы в традиционном, классическом разделе механики - механике материалов. Круг рассмотренных материалов достаточно широк: дисперсные материалы от металлических порошков до оксидной керамики, полимеры, композиционные материалы с различными матрицами и наполнителями, полиграфические материалы. Построена статистическая теория структуры и упруго-прочностных свойств фрактальных дисперсных систем. Разработан фрактальный подход к описанию процессов консолидации дисперсных систем. Развита самосогласованная теория эффективного модуля упругости дисперсно-армированных композитов стохастической структуры в полном диапазоне изменения объемной доли наполнителя. Теория обобщена на композиты с бимодальной упаковкой наполнителей, а также на композиционные материалы с арми - рованием по сложным комбинированным схемам. Рассматривается применение теории фракталов для исследования микроструктуры и физико - механических свойств полиграфических материалов и технологии печатных процессов.  

Указанная особенность теории фракталов обусловливает необходимость развития подхода, основанного на ее синтезе как теории, обеспечивающей эффективное описание структур, и одной из классических теорий прочности, для описания их прочностных свойств. Использование для этих целей структурных теорий , в которых исходят из предположений, что прочность дисперсной структуры аддитивно складывается из прочности отдельных контактов, не совсем корректно для структур, наблюдающихся у пористых случайно - неоднородных композитов, особенно в области, близкой к максимуму плотности.  

Возможности методов теории фракталов применительно к механике полиграфических материалов и технологии печатных процессов продемонстрированы в гл.  

В приложениях теории фракталов к физическим проблемам важную роль играет представление о самоподобии фракталов. Множество G называется самоподобным, если получающееся из него при изменении длин в г 1 раз множество G покрывает без пересечений исходное множество G. Величина г в этом случае называется коэффициентом подобия. В простых случаях самоподобие очевидно.  

Математические основы теории фракталов были заложены в самом начале XX в.  


Методологическая ценность теории фракталов заключается в существовании не только математического аппарата, но и в возможности философского осмысления и систематизации эмпирических данных при формировании математических фрактальных моделей, интерпретации получаемых с их помощью сведений.  

Зачастую гениальные открытия, совершенные в науке, способны кардинально изменять нашу жизнь. Так, например, изобретение вакцины может спасти множество людей, а создание нового вооружения приводит к убийству. Буквально вчера (в масштабе истории) человек «укротил» электричество, а сегодня уже не может представить свою жизнь без него. Однако существуют и такие открытия, которые, что называется, остаются в тени, причем несмотря на то, что они также оказывают то или иное влияние на нашу жизнь. Одним из таких открытий стал фрактал. Большинство людей даже не слышали о таком понятии и не смогут объяснить его значение. В этой статье мы попробуем разобраться с вопросом о том, что такое фрактал, рассмотрим значение этого термина с позиции науки и природы.

Порядок в хаосе

Для того чтобы понять, что такое фрактал, следовало бы начать разбор полетов с позиции математики, однако прежде чем углубляться в мы немного пофилософствуем. Каждому человеку присуща природная любознательность, благодаря которой он и познает окружающий мир. Зачастую в своем стремлении познания он старается оперировать логикой в суждениях. Так, анализируя процессы, которые происходят вокруг, он пытается вычислить взаимосвязи и вывести определенные закономерности. Самые большие умы планеты заняты решением этих задач. Грубо говоря, наши ученые ищут закономерности там, где их нет, да и быть не должно. И тем не менее даже в хаосе есть связь между теми или иными событиями. Вот этой связью и выступает фрактал. В качестве примера рассмотрим сломанную ветку, валяющуюся на дороге. Если внимательно к ней присмотреться, то мы увидим, что она со всеми своими ответвлениями и сучками сама похожа на дерево. Вот эта схожесть отдельной части с единым целым свидетельствует о так называемом принципе рекурсивного самоподобия. Фракталы в природе можно найти сплошь и рядом, ведь многие неорганические и органические формы формируются аналогично. Это и облака, и морские раковины, и раковины улиток, и кроны деревьев, и даже кровеносная система. Данный список можно продолжать до бесконечности. Все эти случайные формы с легкостью описывает фрактальный алгоритм. Вот мы подошли к тому, чтобы рассмотреть, что такое фрактал с позиции точных наук.

Немного сухих фактов

Само слово «фрактал» с латыни переводится как "частичный", "разделенный", "раздробленный", а что касается содержания этого термина, то формулировки как таковой не существует. Обычно его трактуют как самоподобное множество, часть целого, которая повторяется своей структурой на микроуровне. Этот термин придумал в семидесятых годах ХХ века Бенуа Мандельброт, который признан отцом Сегодня под понятием фрактала подразумевают графическое изображение некой структуры, которая при увеличенном масштабе будет подобна сама себе. Однако математическая база для создания этой теории была заложена еще до рождения самого Мандельброта, а вот развиваться она не могла, пока не появились электронные вычислительные машины.

Историческая справка, или Как все начиналось

На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Это объясняется тем, что математики предпочитали изучать объекты, поддающиеся исследованию, на основе общих теорий и методов. В 1872 году немецким математиком К. Вейерштрассом был построен пример непрерывной функции, нигде не дифференцируемой. Однако это построение оказалась целиком абстрактным и трудным для восприятия. Дальше пошел швед Хельге фон Кох, который в 1904 году построил непрерывную кривую, не имеющую нигде касательной. Ее довольно легко нарисовать, и, как оказалось, она характеризуется фрактальными свойствами. Один из вариантов данной кривой назвали в честь ее автора - «снежинка Коха». Далее идею самоподобия фигур развивал будущий наставник Б. Мандельброта француз Поль Леви. В 1938 году он опубликовал статью «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому». В ней он описал новый вид - С-кривую Леви. Все вышеперечисленные фигуры условно относятся к такому виду, как геометрические фракталы.

Динамические, или алгебраические фракталы

К данному классу относится множество Мандельброта. Первыми исследователями этого направления стали французские математики Пьер Фату и Гастон Жюлиа. В 1918 году Жюлиа опубликовал работу, в основе которой лежало изучение итераций рациональных комплексных функций. Здесь он описал семейство фракталов, которые близко связаны с множеством Мандельброта. Невзирая на то что данная работа прославила автора среди математиков, о ней быстро забыли. И только спустя полвека благодаря компьютерам труд Жюлиа получил вторую жизнь. ЭВМ позволили сделать видимым для каждого человека ту красоту и богатство мира фракталов, которые могли «видеть» математики, отображая их через функции. Мандельброт стал первым, кто использовал компьютер для проведения вычислений (вручную такой объем невозможно провести), позволивших построить изображение этих фигур.

Человек с пространственным воображением

Мандельброт начинал свою научную карьеру в исследовательском центре IBM. Изучая возможности передачи данных на большие расстояния, ученые столкнулись с фактом больших потерь, которые возникали из-за шумовых помех. Бенуа искал пути решения этой проблемы. Просматривая результаты измерений, он обратил внимание на странную закономерность, а именно: графики шумов выглядели одинаково в разном масштабе времени.

Аналогичная картина наблюдалась как для периода в один день, так и для семи дней или для часа. Сам Бенуа Мандельброт часто повторял, что он работает не с формулами, а играет с картинками. Этот ученый отличался образным мышлением, любую алгебраическую задачу он переводил в геометрическую область, где правильный ответ очевиден. Так что неудивительно, отличающийся богатым и стал отцом фрактальной геометрии. Ведь осознание данной фигуры может прийти только тогда, когда изучаешь рисунки и вдумываешься в смысл этих странных завихрений, образующих узор. Фрактальные рисунки не имеют идентичных элементов, однако обладают подобностью при любом масштабе.

Жюлиа - Мандельброт

Одним из первых рисунков этой фигуры была графическая интерпретация множества, которая родилась благодаря работам Гастона Жюлиа и была доработана Мандельбротом. Гастон пытался представить, как выглядит множество, построенное на базе простой формулы, которая проитерирована циклом обратной связи. Попробуем сказанное объяснить человеческим языком, так сказать, на пальцах. Для конкретного числового значения с помощью формулы находим новое значение. Подставляем его в формулу и находим следующее. В результате получается большая Для представления такого множества требуется проделать эту операцию огромное количество раз: сотни, тысячи, миллионы. Это и проделал Бенуа. Он обработал последовательность и перенес результаты в графическую форму. Впоследствии он раскрасил полученную фигуру (каждый цвет соответствует определенному числу итераций). Данное графическое изображение получило имя «фрактал Мандельброта».

Л. Карпентер: искусство, созданное природой

Теория фракталов довольно быстро нашла практическое применение. Так как она весьма тесно связана с визуализацией самоподобных образов, то первыми, кто взял на вооружение принципы и алгоритмы построения этих необычных форм, стали художники. Первым из них стал будущий основатель студии Pixar Лорен Карпентер. Работая над презентацией прототипов самолетов, ему в голову пришла идея в качестве фона использовать изображение гор. Сегодня с такой задачей сможет справиться практически каждый пользователь компьютера, а в семидесятых годах прошлого века ЭВМ были не в состоянии выполнять такие процессы, ведь графических редакторов и приложений для трехмерной графики на тот момент еще не было. И вот Лорену попалась книга Мандельброта «Фракталы: форма, случайность и размерность». В ней Бенуа приводил множество примеров, показывая, что существуют фракталы в природе (фыва), он описывал их разнообразную форму и доказывал, что они легко описываются математическими выражениями. Данную аналогию математик приводил в качестве аргумента полезности разрабатываемой им теории в ответ на шквал критики от своих коллег. Они утверждали, что фрактал - это всего лишь красивая картинка, не имеющая никакой ценности, являющаяся побочным результатом работы электронных машин. Карпентер решил опробовать этот метод на практике. Внимательно изучив книгу, будущий аниматор стал искать способ реализации фрактальной геометрии в компьютерной графике. Ему понадобилось всего три дня, чтобы визуализировать вполне реалистичное изображение горного ландшафта на своем компьютере. И сегодня этот принцип широко используется. Как оказалось, создание фракталов не занимает много времени и сил.

Решение Карпентера

Принцип, использованный Лореном, оказался прост. Он состоит в том, чтобы разделить более крупные на мелкие элементы, а те - на аналогичные меньшего размера, и так далее. Карпентер, используя крупные треугольники, дробил их на 4 мелких, и так далее, до тех пор, пока у него не получился реалистичный горный пейзаж. Таким образом, он стал первым художником, который применил фрактальный алгоритм в компьютерной графике для построения требуемого изображения. Сегодня этот принцип используется для имитации различных реалистичных природных форм.

Первая 3D-визуализация на фрактальном алгоритме

Уже через несколько лет Лорен применил свои наработки в масштабном проекте - анимационном ролике Vol Libre, показанном на Siggraph в 1980 году. Это видео потрясло многих, и его создатель был приглашен работать в Lucasfilm. Здесь аниматор смог реализоваться в полной мере, он создал трехмерные ландшафты (целую планету) для полнометражного фильма "Star Trek". Любая современная программа («Фракталы») или приложение для создания трехмерной графики (Terragen, Vue, Bryce) использует все тот же алгоритм для моделирования текстур и поверхностей.

Том Беддард

В прошлом лазерный физик, а ныне цифровых дел мастер и художник, Беддард создал ряд весьма интригующих геометрических фигур, которые назвал фракталы Фаберже. Внешне они напоминают декоративные яйца русского ювелира, на них такой же блестящий замысловатый узор. Беддард использовал шаблонный метод для создания своих цифровых визуализаций моделей. Полученные изделия поражают своей красотой. Хоть многие отказываются сравнивать продукт ручной работы с компьютерной программой, однако следует признать, что полученные формы необычайно красивы. Изюминка заключается в том, что построить такой фрактал сможет любой желающий, воспользовавшись программной библиотекой WebGL. Она позволяет исследовать в реальном времени различные фрактальные структуры.

Фракталы в природе

Мало кто обращает внимание, но эти удивительные фигуры присутствуют повсюду. Природа создана из самоподобных фигур, просто мы этого не замечаем. Достаточно посмотреть через увеличительное стекло на нашу кожу или листок дерева, и мы увидим фракталы. Или взять, к примеру, ананас или даже хвост павлина - они состоят из подобных фигур. А сорт капусты брокколи Романеску вообще поражает своим видом, ведь это поистине можно назвать чудом природы.

Музыкальная пауза

Оказывается, фракталы - это не только геометрические фигуры, они могут быть и звуками. Так, музыкант Джонатан Колтон пишет музыку с помощью фрактальных алгоритмов. Он утверждает, соответствует природной гармонии. Композитор все свои произведения публикует под лицензией CreativeCommons Attribution-Noncommercial, которая предусматривает свободное распространение, копирование, передачу произведений другими лицами.

Индикатор-фрактал

Данная методика нашла весьма неожиданное применение. На ее основе создан инструмент для анализа рынка фондовой биржи, и, как следствие, его начали применять на рынке «Форекс». Сейчас индикатор-фрактал находится на всех торговых платформах и применяется в торговой технике, которую называют ценовым прорывом. Разработал эту методику Билл Вильямс. Как комментирует свое изобретение автор, данный алгоритм является сочетанием нескольких «свечей», в котором центральная отражает максимальную либо, наоборот, минимальную экстремальную точку.

В заключение

Вот мы и рассмотрели, что такое фрактал. Оказывается, в хаосе, который окружает нас, на самом деле существуют идеальные формы. Природа является лучшим архитектором, идеальным строителем и инженером. Она устроена весьма логично, и если мы не можем найти закономерность, это не значит, что ее нет. Может быть, нужно искать в ином масштабе. С уверенностью можно сказать, что фракталы хранят еще немало секретов, которые нам только предстоит открыть.


Наткнулся тут на упоминание "Теории фракталов" в сериале "Иеремия" и заинтресовался этой довольно изящной теорией, которые современные метафизики применяют для доказательства существования Бога. Теория фракталов имеет совсем небольшой возраст. Она появилась в конце шестидесятых годов на стыке математики, информатики, лингвистики и биологии. В то время компьютеры все больше проникали в жизнь людей, ученые начинали применять их в своих исследованиях, росло число пользователей вычислительных машин. Для массового использования компьютеров необходимо стало облегчить процесс общения человека с машиной. Если в самом начале компьютерной эры немногочисленные программисты-пользователи самоотверженно вводили команды в машинных кодах и получали результаты в виде бесконечных лент бумаги, то при массовом и загруженном режиме использования компьютеров возникла необходимость в изобретении такого языка программирования, который был бы понятен для машины, и в то же время, был бы прост в изучении и применении. То есть пользователю требовалось бы ввести только одну команду, а компьютер разложил бы ее на более простые, и выполнил бы уже их. Чтобы облегчить написание трансляторов, на стыке информатики и лингвистики возникла теория фракталов, позволяющая строго задавать взаимоотношения между алгоритмическими языками. А датский математик и биолог А. Линденмеер придумал в 1968 году одну такую грамматику, названную им L-системой, которая, как он полагал, моделирует также рост живых организмов, в особенности образование кустов и веток у растений.

Фрактал (лат. fractus — дробленый, сломанный, разбитый) — сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической. Фрактальная форма подвида цветной капусты (Brassica cauliflora). Фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Отцом фракталов по праву можно считать Бенуа Мандельброта. Мандельброт является изобретателем термина «фрактал». Мандельброт
писал: « Я придумал слово «фрактал», взяв за основу латинское прилагательное «fractus», означающее нерегулярный, рекурсивный,
фрагментный». Первое определение фракталам также дал Б. Мандельброт. На рисунке как раз классическая модель фрактала - Множество Мандельброта.

Если излагать примтивно, то теория фрактала - это сопособность хаотичгных стукртур самоорагнизовываться в систему. Аттра́ктор (англ. attract — привлекать, притягивать) — множество состояний (точнее — точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример — самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор — это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник — пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Большинство типов движения описывается простыми аттракторами, являющиеся ограниченными циклами. Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров. Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz)- одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных. Другим таким аттрактором является — отображение Рёслера (Rössler), котороя имеет двойной период, подобно логистическому отображению. Странные аттракторы появляются в обеих системах, и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например отображения Хенона (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру. Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Так вот, свойство хаотических систем самоорганизовываться с помощью неправильных аттракторов, по мнению некоторых математиков, и явялется недоказуемым доказательством существования Бога и Его энергии творения всего сущего. Загадка!