Проведение ПЦР-анализа (PCR diagnostics) начинается с забора материала для исследования врачом-гинекологом, урологом или дерматовенерологом. Качество, достоверность полученных впоследствии результатов обеспечивается высочайшей квалификацией и огромным опытом работы врачей медицинского центра «Евромедпрестиж» , соблюдающих все необходимые правила проведения ПЦР-анализа: полная стерильность, использование исключительно одноразовых материалов.

Забранный материал со щеточки помещают в контейнер с физраствором. После забора пробы как можно скорее должны быть доставлены в ПЦР — лабораторию.

Проведение в лаборатории ПЦР-анализа происходит в три этапа:

  1. Выделение ДНК
  2. Амплификация ДНК-фрагментов
  3. Детекция ДНК-продуктов амплификации

Выделение ДНК — это первоначальный этап проведения ПЦР-диагностики, суть которого заключается в следующем: врач забирает у пациента материал для исследования и подвергает его специальной обработке. В процессе обработки происходит расщепление двойной спирали ДНК на отдельные нити. В материал пациента добавляется специальная жидкость, растворяющая органические вещества, мешающие «чистоте» проведения реакции. Таким образом удаляются липиды, аминокислоты, пептиды, углеводы, белки и полисахариды. В результате образуется ДНК или РНК.

Принцип метода ПЦР заключается в «строительстве» новых ДНК или РНК инфекций. Без удаления клеточного материала осуществить это невозможно.

Количество времени, затраченного на выделение ДНК, зависит от возбудителя инфекции и от вида используемого для исследования методом ПЦР материала. Например, для подготовки крови к следующему этапу требуется 1,5-2 часа.

0Array ( => Анализы) Array ( => 2) Array ( =>.html) 2

Амплификация ДНК

Для осуществления следующего этапа ДНК-диагностики — амплификации ДНК — врачи используют так называемые ДНК-матрицы — молекулы ДНК инфекций, на которые впоследствии будет происходить «клонирование» ДНК. Уже упоминалось, что наличие полной ДНК инфекции необязательно, для проведения этого этапа достаточно небольшого кусочка молекулы ДНК, который присущ только данному микробу (инфекции).

В основе амплификации ДНК и соответственно в основе всего принципа ПЦР-реакции лежит естественный для всего живого процесс достраивания ДНК — репликации ДНК, который осуществляется путем удвоения единичной цепочки ДНК.

Начав с одного-единственного фрагмента ДНК, врач-лаборант копирует его и увеличивает количество копий в режиме цепной реакции: после первого цикла у вас уже есть 2 фрагмента, после второго цикла — 4, после третьего — 8, после четвертого — 16, затем 32, 64, 128, 256... С каждым циклом происходит удвоение числа копий, и после двадцати циклов счет уже идет на миллионы, а после тридцати — на миллиарды. Цикл длится считанные минуты и сводится к определенному изменению температурного режима в очень небольшом химическом реакторе. Здесь в растворе в достаточном количестве находятся все нужные компоненты синтеза, прежде всего, нуклеотиды А, Г, Т и Ц, а также проведены тонкие подготовительные химические операции для того, чтобы с каждого готового отрезка ДНК тут же снималась точная копия, затем с этой копии — снова копия, в этом и состоит разветвленная цепная реакция.

Путем присоединения к цепи ДНК праймеров — искусственно синтезированных «кусочков» ДНК (нуклеотидных пар), аналогичных ДНК микробов (инфекции) — образуются две короткие, состоящие из двух цепей участков ДНК, спирали, необходимые для синтеза будущей ДНК.

Синтез новой цепи происходит путем достраивания каждой из двух нитей ДНК. Процесс амплификации происходит с помощью специфического участка — ДНК-полимеразы, давшему название лабораторному методу. Полимераза выступает в роли катализатора реакции и следит за последовательным прикреплением нуклеотидных оснований к растущей новой цепи ДНК.

Таким образом, амплификация ДНК представляет собой многократное увеличение числа копий ДНК, которые специфичны, т. е. присущи только определенному организму. Нет необходимости достраивать всю цепь ДНК, чтобы увидеть возбудителя инфекции. Нужен только тот участок, который характерен для данной бактерии как для индивидуальности.

5360 руб.Стоимость комплексной программы у врача гастроэнтеролога

СКИДКА 25%НА ПРИЕМ ВРАЧА КАРДИОЛОГА

- 25%первичный
приём врача
терапевта по выходным

5 160 руб.вместо 5 420 руб. Обследование мужчин на урологические инфекции

АЛЛЕРГОЛОГИЯ5 120 руб. вместо 5 590 руб.

Все многочисленно повторяющиеся этапы амплификации происходят при различных температурах. Для проведения ПЦР-анализа используется специально программируемое оборудование — ПЦР — термостат или амплификатор, которое автоматически осуществляет смену температур. Амплификация проводится по заданной программе, соответствующей виду определяемой инфекции. В зависимости от программы и вида определяемой инфекции процесс автоматизированной ПЦР занимает от 2 до 3 часов.

Важное значение в ПЦР-диагностике играет квалификация врача-лаборанта, проводящего анализ, от него зависит правильность настройки ПЦР-оборудования и интерпретация полученных результатов. Врачи медицинского центра «Евромедпрестиж» имеют большой опыт в проведении ДНК-диагностики, что обеспечивает достоверность полученных результатов исследования и гарантирует положительный успех в лечении инфекционных заболеваний. Чтобы сдать анализы методом ПЦР и провести полную диагностику и лечение инфекционных заболеваний в нашем медицинском центре «Евромедпрестиж».

В процессе детекции продуктов амплификации проходит разделение полученной смеси продуктов амплификации. К смеси добавляется специальные растворы, которые наделяют фрагменты ДНК способностью флуоресцировать — отражаться оранжево-красными светящимися полосами. Образующееся свечение выдает присутствие ДНК вирусов, микробов или бактерий в забранном у пациента на ПЦР-анализ материале.

Получил Нобелевскую премию .

В начале использования метода после каждого цикла нагревания-охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу , так как она инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура проведения реакции была сравнительно неэффективной, требовала много времени и фермента. В 1986 году метод полимеразной цепной реакции был существенно улучшен. Было предложено использовать ДНК-полимеразы из термофильных бактерий . Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3"→5" экзонуклеазная активность). Полимеразы Pfu и Pwo , выделенные из архей , обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq . Сейчас применяют смеси Taq и Pfu , чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.

В момент изобретения метода Кэри Муллис работал химиком-синтетиком (он синтезировал олигонуклеотиды, которые применялись тогда для выявления точечных мутаций методом гибридизации с геномной ДНК) в компании Цетус (Cetus Corporation), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq -полимеразы компании Хофман-Ла Рош за 300 млн долларов. Однако оказалось, что Taq -полимераза была охарактеризована советскими биохимиками А. Калединым, А. Слюсаренко и С.Городецким в 1980 году , а также за 4 года до этой советской публикации, то есть в 1976 году, американскими биохимиками Alice Chien, David B.Edgar и John M. Trela. В связи с этим компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент . Американский патент на метод ПЦР истёк в марте 2005 г.

Проведение ПЦР

Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro ). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК . В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp ). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20-40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований .

Компоненты реакции

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица , содержащая тот участок ДНК, который требуется амплифицировать .
  • Два праймера , комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.
  • Термостабильная ДНК-полимераза - фермент , который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.
  • Дезоксирибонуклеозидтрифосфаты (dATP, dGTP, dCTP, dTTP).
  • Ионы Mg 2+ , необходимые для работы полимеразы.
  • Буферный раствор , обеспечивающий необходимые условия реакции - рН , ионную силу раствора . Содержит соли, бычий сывороточный альбумин .

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата , побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата . Пирофосфат может ингибировать ПЦР-реакцию .

Праймеры

Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами , короткими синтетическими олигонуклеотидами длиной 18-30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы и ограничивает начало и конец амплифицируемого участка.

После гибридизации матрицы с праймером (отжиг ), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ).

Важнейшая характеристика праймеров - температура плавления (T m) комплекса праймер-матрица.

T m - температура, при которой половина ДНК-матриц образует комплекс с олигонуклеотидным праймером. Усредненная формула подсчета T m для короткого олигонуклеотида (и для длинных ДНК фрагментов), с учетом концентрации ионов K + и DMSO :

где L - количество нуклеотидов в праймере, K + - молярная концентрация ионов калия, G+C - сумма всех гуанинов и цитозинов .

В случае неверного выбора длины и нуклеотидного состава праймера или температуры отжига возможно образование частично комплементарных комплексов с другими участками матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.

При выборе праймеров желательно придерживаться следующих критериев:

Амплификатор

Рис. 1 : Амплификатор для проведения ПЦР

ПЦР проводят в амплификаторе - приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Ход реакции

Фотография геля, содержащего маркерную ДНК (первый и последний слоты) и продукты ПЦР

Обычно при проведении ПЦР выполняется 20-35 циклов, каждый из которых состоит из трёх стадий (рис. 2).

Денатурация

Двухцепочечную ДНК-матрицу нагревают до 94-96 °C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5-2 мин, чтобы цепи ДНК разошлись. Эта стадия называется денатурацией , так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2-3 мин для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

Отжиг

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом . Температура отжига зависит от состава праймеров и обычно выбирается равной температуре плавления праймеров. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре). Время стадии отжига - 30 cек, одновременно, за это время полимераза уже успевает синтезировать несколько сотен нуклеотидов. Поэтому рекомендуется подбирать праймеры с температурой плавления выше 60 °C и проводить отжиг и элонгацию одновременно, при 60-72 °C.

Элонгация

ДНК-полимераза реплицирует матричную цепь, используя праймер в качестве затравки. Это - стадия элонгации . Полимераза начинает синтез второй цепи от 3"-конца праймера, который связался с матрицей, и движется вдоль матрицы, синтезируя новую цепь в направлении от 5" к 3" концу. Температура элонгации зависит от полимеразы. Часто используемые полимеразы Taq и Pfu наиболее активны при 72 °C. Время элонгации зависит как от типа ДНК-полимеразы, так и от длины амплифицируемого фрагмента. Обычно время элонгации принимают равным одной минуте на каждую тысячу пар оснований. После окончания всех циклов часто проводят дополнительную стадию финальной элонгации , чтобы достроить все одноцепочечные фрагменты. Эта стадия длится 7-10 мин.

Рис. 2 : Схематическое изображение первого цикла ПЦР. (1) Денатурация при 94-96 °C. (2) Отжиг при 68 °C (например). (3) Элонгация при 72 °C (P=полимераза). (4) Закончен первый цикл. Две получившиеся ДНК-цепи служат матрицей для следующего цикла, поэтому количество матричной ДНК в ходе каждого цикла удваивается

Количество специфического продукта реакции (ограниченного праймерами) теоретически возрастает пропорционально 2 n - 2n, где n - число циклов реакции . На самом деле эффективность каждого цикла может быть меньше 100 %, поэтому в действительности P ~ (1+E) n , где P - количество продукта, Е - средняя эффективность цикла.

Число «длинных» копий ДНК тоже растет, но линейно, поэтому в продуктах реакции доминирует специфический фрагмент.

Рост требуемого продукта в геометрической прогрессии ограничен количеством реагентов, присутствием ингибиторов , образованием побочных продуктов. На последних циклах реакции рост замедляется, это называют «эффектом плато».

Разновидности ПЦР

  • Вложенная ПЦР (Nested PCR (англ.) ) - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
  • Инвертированная ПЦР (Inverse PCR (англ.) ) - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов (лигирование). В результате известные фрагменты оказываются на обоих концах неизвестного участка, после чего можно проводить ПЦР как обычно.
  • ПЦР с обратной транскрипцией (Reverse Transcription PCR, RT-PCR (англ.) ) - используется для амплификации, выделения или идентификации известной последовательности из библиотеки РНК. Перед обычной ПЦР проводят на матрице мРНК синтез одноцепочечной молекулы ДНК с помощью ревертазы и получают одноцепочечную кДНК , которая используется в качестве матрицы для ПЦР. Этим методом часто определяют, где и когда экспрессируются данные гены.
  • Асимметричная ПЦР (англ. Asymmetric PCR ) - проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке. Модификаций этого метода является англ. Linear- After- The- Exponential-PCR (LATE-PCR), в котором используются праймеры с разной концентрацией, и праймер с низкой концентрацией подбирается с высокой (температурой плавления), чем праймер с высокой концентрацией. ПЦР проводят при высокой температуре отжига, тем самым удаётся поддержать эффективности реакции на протяжении всех циклов .
  • Количественная ПЦР (Quantitative PCR, Q-PCR (англ.) ) или ПЦР в реальном времени - используется для непосредственного наблюдения за измерением количества конкретного ПЦР продукта в каждом цикле реакции. В этом методе используют флуоресцентно-меченые праймеры или ДНК-зонды для точного измерения количества продукта реакции по мере его накопления; или используется флуоресцентный интеркалирующий краситель Sybr Green I , который связывается с двухцепочечной ДНК. Sybr Green I обеспечивает простой и экономичный вариант для детекции и количественного определения ПЦР-продуктов в ходе ПЦР в режиме реального времени без необходимости использования специфичных флуоресцентных зондов или праймеров. В ходе амплификации краситель SYBR Green I встраивается в малую бороздку ДНК ПЦР продуктов и испускает более сильный по сравнению с несвязанным красителем флуоресцентный сигнал при облучении синим лазером. SYBR Green I совместим со всеми известными на сегодняшний день приборами для проведения ПЦР в режиме реального времени. Максимум поглощения для SYBR Green I находится при длине волны 494 нм. Кроме главного, в спектре красителя имеются два небольших дополнительных максимума поглощения - при 290 нм и 380 нм. Максимум испускания для SYBR Green I находится при длине волны 521 нм (зелёный) .
  • Ступенчатая ПЦР (Touchdown PCR (англ.) ) - с помощью этого подхода уменьшают влияние неспецифического связывания праймеров. Первые циклы проводят при температуре выше оптимальной температуры отжига, затем каждые несколько циклов температуру отжига постепенно снижают до оптимальной. Это делается для того, чтобы праймер гибридизовался с комплементарной цепью всей своей длиной; тогда как при оптимальной температуре отжига, праймер частично гибридизуется с комплементарной цепью. Частичная гибридизация праймера на геномной ДНК приводит к неспецифической амплификации, если участков связывания для праймера достаточно много. В большинстве случаев, первые десять ПЦР циклов, можно проводить при температуре отжига в 72-75°С, а затем сразу снизить до оптимальной, например до 60-65°С.
  • Метод молекулярных колоний (ПЦР в геле, англ. Colony - PCR Colony ) - акриламидный гель полимеризуют со всеми компонентами ПЦР на поверхности и проводят ПЦР. В точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
  • ПЦР с быстрой амплификацией концов кДНК (англ. Rapid amplification of cDNA ends, RACE-PCR ).
  • ПЦР длинных фрагментов (англ. Long-range PCR ) - модификация ПЦР для амплификации протяженных участков ДНК (10 тысяч и более оснований). Используют смесь двух полимераз, одна из которых - Taq-полимераза с высокой процессивностью (то есть, способная за один проход синтезировать длинную цепь ДНК), а вторая - ДНК полимераза с 3"-5" экзонуклеазной активностью, обычно это Pfu полимераза. Вторая полимераза необходима для того, чтобы корректировать ошибки, внесённые первой, так как Taq-полимераза останавливает синтез ДНК если был добавлен не комплементарный нуклеотид. Этот не комплементарный нуклеотид удаляет Pfu полимераза. Смесь полимераз берется в отношении 50:1 или даже меньше 100:1, где Taq-полимераза берётся в 25-100 раз больше по отношению к Pfu полимеразе.
  • RAPD (англ. Random Amplification of Polymorphic DNA ), ПЦР со случайной амплификацией полиморфной ДНК - используется тогда, когда нужно различить близкие по генетической последовательности организмы, например, разные сорта культурных растений, породы собак или близкородственные микроорганизмы. В этом методе обычно используют один праймер небольшого размера (около 10 п.н.). Этот праймер будет частично комплементарен случайным участкам ДНК исследуемых организмов. Подбирая условия (длину праймера, его состав, температуру и пр.), удаётся добиться удовлетворительного отличия картины ПЦР для двух организмов.
  • Групп-специфическая ПЦР (англ. group-specific PCR ) - ПЦР для родственных последовательностях внутри одного или между разными видами , используя консервативные праймеры к этим последовательностям. Например, подбор универсальных праймеров к рибосомальным 18S и 26S генам для амплификации видоспецифического межгенного спейсера: последовательность генов 18S и 26S консервативна между видами, поэтому ПЦР между этими генами будет проходить для всех исследуемых видов. Противоположный этому методу является - уникальная ПЦР (англ. unique PCR ), в котором задача состоит в подборе праймеров для амплификации только конкретной последовательности среди родственных последовательностей.
  • ПЦР с использованием горячего старта (англ. Hot-start PCR ) - модификация ПЦР с использованием ДНК-полимеразы, в которой полимеразная активность блокируется при комнатной температуре антителами или имитирующие антитела небольшими молекулами типа Affibody , то есть в момент постановки реакции до первой денатурации в ПЦР. Обычно первая денатурация проводится при 95 °C в течение 10 минут.
  • Виртуальная ПЦР (англ. in silico PCR , цифровая ПЦР, электронная ПЦР, е-ПЦР) - математический метод компьютерного анализа теоретической полимеразной цепной реакции c использованием списка последовательностей праймеров (или ДНК-зондов) для предсказания потенциальной амплификации ДНК исследуемого генома , хромосомы , кольцевой ДНК или любого другого участка ДНК.

Если нуклеотидная последовательность матрицы известна частично или неизвестна вовсе, можно использовать вырожденные праймеры , последовательность которых содержит вырожденные позиции, в которых могут располагаться любые основания. Например, последовательность праймера может быть такой: …ATH… , где Н - А, Т или С.

Применение ПЦР

ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью электрофореза ДНК. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев (англ. genetic fingerprint ).

Установление отцовства

Рис. 3 : Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. (1) Отец. (2) Ребёнок. (3) Мать. Ребёнок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций . Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Иногда лекарства оказываются токсичными или аллергенными для некоторых пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием (англ. prospective genotyping ).

Клонирование генов

Клонирование генов (не путать с клонированием организмов) - это процесс выделения генов и, в результате генноинженерных манипуляций , получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Рис. 4 : Клонирование гена с использованием плазмиды.
(1) Хромосомная ДНК организма A. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В.

Секвенирование ДНК

В методе секвенирования с использованием меченных флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченные флуоресцентной или радиоактивной меткой. Присоединение дидезоксинуклеотида к синтезируемой цепи приводит к обрыву синтеза, позволяя определить положение специфических нуклеотидов после разделения в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза (внесения изменений в нуклеотидную последовательность ДНК). Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

Однако в то время эта идея осталась невостребованной. Полимеразная цепная реакция была вновь открыта в 1983 году Кэри Маллисом. Его целью было создание метода, который бы позволил амплифицировать ДНК в ходе многократных последовательных удвоений исходной молекулы ДНК с помощью фермента ДНК-полимеразы . Через 7 лет после опубликования этой идеи, в 1993 г., Маллис получил за неё Нобелевскую премию .

В начале использования метода после каждого цикла нагревания - охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу , так как она быстро инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура была очень неэффективной, требовала много времени и фермента. В 1986 г. она была существенно улучшена. Было предложено использовать ДНК-полимеразы из термофильных бактерий . Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой. Недостаток этой полимеразы заключается в том, что вероятность внесения ошибочного нуклеотида у неё достаточно высока, так как у этого фермента отсутствуют механизмы исправления ошибок (3"→5" экзонуклеазная активность). Полимеразы Pfu и Pwo , выделенные из архей , обладают таким механизмом, их использование значительно уменьшает число мутаций в ДНК, но скорость их работы (процессивность) ниже, чем у Taq . Сейчас применяют смеси Taq и Pfu , чтобы добиться одновременно высокой скорости полимеризации и высокой точности копирования.

В момент изобретения метода Маллис работал в компании Цетус (en:Cetus Corporation), которая и запатентовала метод ПЦР. В 1992 году Цетус продала права на метод и патент на использование Taq -полимеразы компании Хофман-Ла Рош (en:Hoffmann-La Roche) за 300 млн долларов. Однако оказалось, что Taq -полимераза была охарактеризована русским биохимиком Алексеем Калединым в 1980 году , в связи с чем компания Промега (Promega) пыталась в судебном порядке заставить Рош отказаться от исключительных прав на этот фермент . Американский патент на метод ПЦР истёк в марте 2005 г.

Проведение ПЦР

Метод основан на многократном избирательном копировании определённого участка ДНК при помощи ферментов в искусственных условиях (in vitro ). При этом происходит копирование только того участка, который удовлетворяет заданным условиям, и только в том случае, если он присутствует в исследуемом образце. В отличие от амплификации ДНК в живых организмах, (репликации), с помощью ПЦР амплифицируются относительно короткие участки ДНК . В обычном ПЦР-процессе длина копируемых ДНК-участков составляет не более 3000 пар оснований (3 kbp ). С помощью смеси различных полимераз, с использованием добавок и при определённых условиях длина ПЦР-фрагмента может достигать 20-40 тысяч пар нуклеотидов. Это всё равно значительно меньше длины хромосомной ДНК эукариотической клетки. Например, геном человека состоит примерно из 3 млрд пар оснований .

Компоненты реакции

Для проведения ПЦР в простейшем случае требуются следующие компоненты:

  • ДНК-матрица , содержащая тот участок ДНК, который требуется амплифицировать .
  • Два праймера , комплементарные противоположным концам разных цепей требуемого фрагмента ДНК.
  • Термостабильная ДНК-полимераза - фермент , который катализирует реакцию полимеризации ДНК. Полимераза для использования в ПЦР должна сохранять активность при высокой температуре длительное время, поэтому используют ферменты, выделенные из термофилов - Thermus aquaticus (Taq-полимераза), Pyrococcus furiosus (Pfu-полимераза), Pyrococcus woesei (Pwo-полимераза) и другие.
  • Дезоксинуклеозидтрифосфаты (dATP, dGTP, dCTP, dTTP).
  • Ионы Mg 2+ , необходимые для работы полимеразы.
  • Буферный раствор , обеспечивающий необходимые условия реакции - рН , ионную силу раствора . Содержит соли, бычий сывороточный альбумин.

Чтобы избежать испарения реакционной смеси, в пробирку добавляют высококипящее масло, например, вазелиновое. Если используется амплификатор с подогревающейся крышкой, этого делать не требуется.

Добавление пирофосфатазы может увеличить выход ПЦР-реакции. Этот фермент катализирует гидролиз пирофосфата , побочного продукта присоединения нуклеотидтрифосфатов к растущей цепи ДНК, до ортофосфата . Пирофосфат может ингибировать ПЦР-реакцию .

Праймеры

Специфичность ПЦР основана на образовании комплементарных комплексов между матрицей и праймерами , короткими синтетическими олигонуклеотидами длиной 18-30 оснований. Каждый из праймеров комплементарен одной из цепей двуцепочечной матрицы и ограничивает начало и конец амплифицируемого участка.

После гибридизации матрицы с праймером (отжиг ), последний служит затравкой для ДНК-полимеразы при синтезе комплементарной цепи матрицы (см. ).

Важнейшая характеристика праймеров - температура плавления (T m) комплекса праймер-матрица. T m это температура, при которой половина ДНК-матриц образует комплекс с олигонуклеотидным праймером. Температуру плавления можно приблизительно определить по формуле , где n X - количество нуклеотидов Х в праймере. В случае неверного выбора длины и нуклеотидного состава праймера или температуры отжига возможно образование частично комплементарных комплексов с другими участками матричной ДНК, что может привести к появлению неспецифических продуктов. Верхний предел температуры плавления ограничен оптимумом температуры действия полимеразы, активность которой падает при температурах выше 80 °C.

При выборе праймеров желательно придерживаться следующих критериев:

Амплификатор

Рис. 1 : Амплификатор для проведения ПЦР

ПЦР проводят в амплификаторе - приборе, обеспечивающем периодическое охлаждение и нагревание пробирок, обычно с точностью не менее 0,1 °C. Современные амплификаторы позволяют задавать сложные программы, в том числе с возможностью «горячего старта», Touchdown ПЦР (см. ниже) и последующего хранения амплифицированных молекул при 4 °C. Для ПЦР в реальном времени выпускают приборы, оборудованные флуоресцентным детектором. Существуют также приборы с автоматической крышкой и отделением для микропланшет, что позволяет встраивать их в автоматизированные системы.

Ход реакции

Фотография геля, содержащего маркерную ДНК (1) и продукты ПЦР-реакции (2,3). Цифрами показана длина фрагментов ДНК в парах нуклеотидов

Обычно при проведении ПЦР выполняется 20-35 циклов, каждый из которых состоит из трех стадий (рис. 2).

Денатурация

Двухцепочечную ДНК-матрицу нагревают до 94-96°C (или до 98 °C, если используется особенно термостабильная полимераза) на 0,5-2 мин., чтобы цепи ДНК разошлись. Эта стадия называется денатурацией , так как разрушаются водородные связи между двумя цепями ДНК. Иногда перед первым циклом (до добавления полимеразы) проводят предварительный прогрев реакционной смеси в течение 2-5 мин. для полной денатурации матрицы и праймеров. Такой приём называется горячим стартом , он позволяет снизить количество неспецифичных продуктов реакции.

Отжиг

Когда цепи разошлись, температуру понижают, чтобы праймеры могли связаться с одноцепочечной матрицей. Эта стадия называется отжигом . Температура отжига зависит от состава праймеров и обычно выбирается на 4-5°С ниже их температуры плавления. Время стадии - 0,5-2 мин. Неправильный выбор температуры отжига приводит либо к плохому связыванию праймеров с матрицей (при завышенной температуре), либо к связыванию в неверном месте и появлению неспецифических продуктов (при заниженной температуре).

Элонгация

Разновидности ПЦР

  • «Вложенная» ПЦР (Nested PCR(англ.) ) - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.
  • «Инвертированная» ПЦР (Inverse PCR(англ.) ) - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК рестриктазами с последующим соединением фрагментов (лигирование). В результате известные фрагменты оказываются на обоих концах неизвестного участка, после чего можно проводить ПЦР как обычно.
  • ПЦР с обратной транскрипцией (Reverse Transcription PCR, RT-PCR (англ.) ) - используется для амплификации, выделения или идентификации известной последовательности из библиотеки РНК. Перед обычной ПЦР проводят на матрице мРНК синтез одноцепочечной молекулы ДНК с помощью ревертазы и получают одноцепочечную кДНК , которая используется в качестве матрицы для ПЦР. Этим методом часто определяют, где и когда экспрессируются данные гены.
  • Асимметричная ПЦР (англ. Asymmetric PCR ) - проводится тогда, когда нужно амплифицировать преимущественно одну из цепей исходной ДНК. Используется в некоторых методиках секвенирования и гибридизационного анализа. ПЦР проводится как обычно, за исключением того, что один из праймеров берется в большом избытке.
  • Количественная ПЦР (Quantitative PCR, Q-PCR(англ.) ) - используется для быстрого измерения количества определенной ДНК, кДНК или РНК в пробе.
  • Количественная ПЦР в реальном времени (Quantitative real-time PCR) - в этом методе используют флуоресцентно меченые реагенты для точного измерения количества продукта реакции по мере его накопления.
  • Touchdown (Stepdown) ПЦР (Touchdown PCR(англ.) ) - с помощью этого метода уменьшают влияние неспецифического связывания праймеров на образование продукта. Первые циклы проводят при температуре выше температуры отжига, затем каждые несколько циклов температуру снижают. При определённой температуре система пройдёт через полосу оптимальной специфичности праймеров к ДНК.
  • Метод молекулярных колоний (ПЦР в геле, англ. Polony - PCR Colony ) - акриламидный гель полимеризуют со всеми компонентами ПЦР на поверхности и проводят ПЦР. В точках, содержащих анализируемую ДНК, происходит амплификация с образованием молекулярных колоний.
  • ПЦР с быстрой амплификацией концов кДНК (англ. Rapid amplification of cDNA ends, RACE-PCR )
  • ПЦР длинных фрагментов (англ. Long-range PCR ) - модификация ПЦР для амплификации протяженных участков ДНК (10 тысяч оснований и больше). Используют две полимеразы, одна из которых - Taq-полимераза с высокой процессивностью (то есть, способная за один проход синтезировать длинную цепь ДНК), а вторая - ДНК полимераза с 3"-5" эндонуклеазной активностью. Вторая полимераза необходима для того, чтобы корректировать ошибки, внесенные первой.
  • RAPD PCR (англ. Random Amplification of Polymorphic DNA PCR , ПЦР со случайной амплификацией полиморфной ДНК - используется тогда, когда нужно различить близкие по генетической последовательности организмы, например, разные сорта культурных растений, породы собак или близкородственные микроорганизмы. В этом методе обычно используют один праймер небольшого размера (20 - 25 п.н.). Этот праймер будет частично комплементарен случайным участкам ДНК исследуемых организмов. Подбирая условия (длину праймера, его состав, температуру и пр.), удается добиться удовлетворительного отличия картины ПЦР для двух организмов.

Если нуклеотидная последовательность матрицы известна частично или неизвестна вовсе, можно использовать вырожденные праймеры , последовательность которых содержит вырожденные позиции, в которых могут располагаться любые основания. Например, последовательность праймера может быть такой: …ATH… , где Н - А, Т или С.

Применение ПЦР

ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых «генетических отпечатков пальцев». Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т. п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью ДНК электрофореза . Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев (англ. genetic fingerprint ).

Установление отцовства

Рис. 3 : Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. (1) Отец. (2) Ребенок. (3) Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя «генетические отпечатки пальцев» уникальны (за исключением случая однояйцевых близнецов), родственные связи все же можно установить, сделав несколько таких отпечатков (рис. 3). Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций . Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Известно, что большинство лекарств действуют не на всех пациентов, для которых они предназначены, а лишь на 30-70 % их числа. Кроме того, многие лекарства оказываются токсичными или аллергенными для части пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром (белок печени, отвечающий за метаболизм чужеродных веществ) может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием (англ. prospective genotyping ).

Клонирование генов

Клонирование генов (не путать с клонированием организмов) - это процесс выделения генов и, в результате генноинженерных манипуляций , получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Рис. 4 : Клонирование гена с использованием плазмиды. .
(1) Хромосомная ДНК организма A. (2) ПЦР. (3) Множество копий гена организма А. (4) Вставка гена в плазмиду. (5) Плазмида с геном организма А. (6) Введение плазмиды в организм В. (7) Умножение количества копий гена организма А в организме В.

Секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

"Карельская государственная педагогическая академия"


Курсовая работа на тему:

Полимеразная цепная реакция (ПЦР) и её применение


Выполнила: студентка Корягина Валерия Александровна

Проверила: Карпикова Наталья Михайловна


Петрозаводск 2013


Введение

Глава 1. Литературный обзор

1.5.4 Эффект "Плато"

1.5.6 Амплификация

Заключение


Введение


Последнее двадцатилетие ознаменовалось широким внедрением в биологические, медицинские и сельскохозяйственные науки молекулярно-генетических методов.

К началу 70-х годов казалось, что молекулярная биология достигла определенной степени завершенности. В этот период главным объектом молекулярно-генетических исследований были микроорганизмы. Переход к эукариотам поставил перед исследователями совершенно новые проблемы, которые не могли быть решены с использованием существовавших в то время методов генетического анализа. Прорыв в развитии молекулярной генетики стал возможен благодаря появлению нового экспериментального инструмента - рестрикационных эндонуклеаз. В последующие годы количество методов непосредственного анализа ДНК, основанных на качественно различающихся подходах, начало стремительно увеличиваться.

Современные технологии во многих случаях позволили на более глубоком уровне начать изучение тонкой структурно-функциональной организации ядерных и внеядерных геномов различных организмов. Особое значение это имело для разработки новых методов диагностики и лечения различных заболеваний. Не менее важным оказалась возможность использования достижения молекулярной генетики в популяционной биологии и в селекции для выявления и анализа генетической изменчивости популяций, сортов и штаммов, идентификации и паспортизации хозяйственно ценных особей, создания генетически модифицированных организмов и для решения других вопросов.

Каждый метод имеет свои преимущества и недостатки. Нет универсального метода, который мог бы позволить решить все возникающие проблемы. Поэтому выбор конкретного метода для проводимого исследования является одним из важнейших этапов любой научной работы.

Глава 1. Литературный обзор


1.1 История открытия Полимеразной цепной реакции (ПЦР)


В 1983 г. К.Б. Мюллис и др. опубликовали и запатентовали метод полимеразной цепной реакции (ПЦР), которому суждено было оказать глубочайшее влияние на все области исследования и прикладного использования нуклеиновых кислот. Значение этого метода для молекулярной биологии и генетики оказалось столь велико и очевидно, что уже через семь лет автору была присуждена Нобелевская премия по химии.

В начале использования метода после каждого цикла нагревания-охлаждения приходилось добавлять в реакционную смесь ДНК-полимеразу, так как она инактивировалась при высокой температуре, необходимой для разделения цепей спирали ДНК. Процедура проведения реакции была сравнительно неэффективной, требовала много времени и фермента. В 1986 году метод полимеразной цепной реакции был существенно улучшен. Было предложено использовать ДНК-полимеразы из термофильных бактерий. Эти ферменты оказались термостабильными и были способны выдерживать множество циклов реакции. Их использование позволило упростить и автоматизировать проведение ПЦР. Одна из первых термостабильных ДНК-полимераз была выделена из бактерий Thermus aquaticus и названа Taq -полимеразой.

Возможность амплификации любого сегмента ДНК, последовательность нуклеотидов которого известна, и получение его по завершении ПЦР в гомогенном виде и препаративном количестве делают ПЦР альтернативным методом молекулярного клонирования коротких фрагментов ДНК. При этом не возникает необходимости в применении сложных методических приемов, которые используют в генной инженерии при обычном клонировании. Разработка метода ПЦР во многом расширила методические возможности молекулярной генетики, и, в частности, генной инженерии, причем настолько, что это кардинально изменило и усилило научный потенциал многих её направлений.


1.2 Разновидности полимеразной цепной реакции (ПЦР)


·Вложенная ПЦР - применяется для уменьшения числа побочных продуктов реакции. Используют две пары праймеров и проводят две последовательные реакции. Вторая пара праймеров амплифицирует участок ДНК внутри продукта первой реакции.

·Инвертированная ПЦР - используется в том случае, если известен лишь небольшой участок внутри нужной последовательности. Этот метод особенно полезен, когда нужно определить соседние последовательности после вставки ДНК в геном. Для осуществления инвертированной ПЦР проводят ряд разрезаний ДНК - рестриктазами <#"justify">полимеразная цепная реакция праймер

·Групп-специфическая ПЦР - ПЦР для родственных <#"center">1.3 Полимеразная цепная реакция


Открытая в середине 80-х годов, полимеразная цепная реакция (ПЦР) способна увеличить количество копий исходной пробы в миллионы раз в течение нескольких часов. В ходе каждого цикла реакции из исходной молекулы образуются две копии. Каждая из синтезированных копий ДНК может служить матрицей для синтеза новых копий ДНК в следующем цикле. Таким образом, многократное повторение циклов, приводит к возрастанию количества копий в геометрической прогрессии. Из расчетов следует, что даже при наличии 30 циклов, число копий исходной молекулы составит более 1 миллиарда. Даже если учесть, что в ходе каждого цикла дуплицируются не все ампликоны, то общее количество копий, несмотря на это, составляет достаточно большую цифру.

Каждый цикл полимеразной цепной реакции (ПЦР) состоит из следующих этапов:

·Денатурация - Повышение температуры вызывает раскручивание и расщепление двухцепочечной молекулы ДНК на две одноцепочечные;

·Отжиг - Снижение температуры позволяет праймерам присоединиться к комплементарным участкам молекулы ДНК;

·Элонгация - Фермент ДНК-полимераза достраивает комплементарную цепь.

Для амплификации избранного фрагмента используют два олигонуклеотидных праймера (затравки), фланкирующих определенный участок ДНК. Праймеры ориентированы 3-концами навстречу друг другу и в сторону той последовательности, которую необходимо амплифицировать. ДНК-полимераза осуществляет синтез (достройку) взаимно комплементарных цепей ДНК, начиная с праймеров. При синтезе ДНК праймеры физически встраиваются в цепь новосинтезирующихся молекул ДНК. Каждая цепь молекулы ДНК, образующаяся с помощью одного из праймеров, может служить матрицей для синтеза комплементарной цепи ДНК с помощью другого праймера.


1.4 Проведение полимеразной цепной реакции (ПЦР)


Полимеразную цепную реакцию проводят в специальных тонкостенных полипропиленовых пробирках, совместимых по размеру с используемым термоциклером (амплификатором) - прибором, который контролирует температурные и временные характеристики этапов полимеразной цепной реакции (ПЦР).


1.5 Принцип метода полимеразной цепной реакции


Полимеразная цепная реакция (ПЦР) - метод амплификации ДНК in vitro, с помощью которого в течение нескольких часов можно выделить и размножить определённую последовательность ДНК в миллиарды раз. Возможность получения огромного количества копий одного строго определённого участка генома значительно упрощает исследование имеющегося образца ДНК.

Для проведения полимеразной цепной реакции необходимо соблюдение ряда условий:


1.5.1 Наличие в реакционной смеси ряда компонентов

Основными компонентами реакционной (ПЦР) смеси являются: Трис-HCl, KCl, MgCl2, смесь нуклеотидтрифосфатов (АТФ, ГТФ, ЦТФ, ТТФ), праймеры (олигонуклеотиды), препарат анализируемой ДНК, термостабильная ДНК-полимераза. Каждый из компонентов реакционной смеси непосредственно участвует в полимеразной цепной реакции (ПЦР), а концентрация реагентов напрямую влияет на ход амплификации.

·Трис-HCl - определяет pH реакционной смеси, создает буферную емкость. Активность ДНК-полимеразы зависит от pH среды, поэтому значение водородного показателя напрямую влияет на ход полимеразной цепной реакции. Обычно значение pH находится в пределах 8 - 9,5. Высокое значение pH берется из-за того, что при повышении температуры pH Трил-HCl буфера падает.

·KCl - концентрация хлорида калия до 50 мМ влияет на протекание процессов денатурации и отжига, концентрация свыше 50 мМ ингибирует ДНК-полимеразу.

·MgCl2 - поскольку ДНК-полимераза является Mg2+ - зависимым ферментом, то концентрация ионов магния влияет на активность фермента (Mg2+ образует комплексы с НТФ - именно эти комплексы являются субстратом для полимеразы). Высокая концентрация приводит к увеличению неспецифической амплификации, а низкая ведет - к ингибированию реакции, оптимум (для различных полимераз) находится в области 0,5 - 5мМ. Кроме того, концентрация солей магния влияет на протекание процессов денатурации и отжига - повышение концентрации Mg2+ вызывает повышение температуры плавления ДНК (т.е. температуры, при корой 50% двухцепочечных нитей ДНК разъединяются на одноцепочечные).

·НТФ - нуклеотидтрифосфаты являются непосредственными мономерами нуклеиновых кислот. Для предотвращения цепной терминации рекомендуется равноколличественное соотношение всех четырех нуклеотидтрифосфатов. Низкая концентрация данных компонентов в реакционной смеси увеличивает вероятность ошибки при построении комплементарной цепи ДНК.

·Праймеры - Наиболее оптимальным является использование праймеров с разницей температур плавления не более 2 - 4oС. Иногда при длительном хранении при температуре 4oС, или после большого количества замораживаний - оттаиваний праймеры образуют вторичные структуры - димеры, снижая эффективность протекания ПЦР. Устранение данной проблемы сводится к инкубации на водяной бане (Т=95oС) в течение 3 минут и последующему резкому охлаждению до 0oС.

·Препараты ДНК - количество и качество препарата ДНК (матрицы) непосредственно влияет на ход и параметры полимеразной цепной реакции. Избыточное количество образца ДНК ингибирует полимеразную цепную реакцию (ПЦР). Примеси различных веществ, находящихся в препарате ДНК, могут также уменьшить эффективность протекания полимеразной цепной реакции (ПЦР): ацетат натрия, хлорид натрия, изопропанол, этанол, гепарин, фенол, мочевина, гемоглобин и др.

·ДНК-полимераза - при использовании малого количества ДНК-полимеразы наблюдается уменьшение синтеза конечного продукта прямо пропорционально размеру фрагментов. Избыток полимеразы в 2 - 4 раза приводит к появлению диффузных спектров, а в 4 - 16 раз - низкомолекулярных неспецифических спектров. Диапазон используемых концентраций - 0,5 - 1,5 единиц активности в перерасчете на 25 мкл ПЦР смеси.

Кроме основных компонентов ПЦР смеси, используют ряд дополнительных веществ, улучшающих качественные и количественные показатели ПЦР: ацетамид (5%) - увеличение растворимости основных компонентов; бетаин (натриевая соль) - стабилизация ДНК-полимеразы, понижение температуры плавления ДНК, выравнивание температуры плавления; альбумин бычий (10-100 мкг/мл) - стабилизация ДНК-полимеразы; диметилсульфоксид (1-10%) - повышение растворимости основных компонентов; формамид (2-10%) - увеличение специфичности отжига; глицерин (15-20%) - увеличение термостабильности фермента, понижение температуры денатурации образца ДНК; сульфат аммония - снижение температуры денатурации и отжига.


1.5.2 Циклический и температурный режим

Общий вид программы полимеразной цепной реакции (ПЦР) следующий:

этап. Длительная первичная денатурация препарата ДНК.1 цикл

этап. Быстрая денатурация препарата ДНК. Отжиг праймеров. Элонгация.30 - 45 циклов.

этап. Длительная элонгация. Охлаждение реакционной смеси.1 цикл.

Каждый элемент этапа - денатурация, отжиг, элонгация - имеет индивидуальные температурные и временные характеристики. Параметры температуры и времени протекания каждого элемента подбирают эмпирически, в соответствии с качественными и количественными показателями продуктов амплификации.

Денатурация. В ходе данного элемента полимеразной цепной реакции происходит расщепление двухцепочечной молекулы ДНК на две одноцепочечные. Температурные параметры денатурации находятся в области 90 - 95oС, но в случае ДНК-образца с большим содержанием гуанина и цитозина, температура должна быть увеличена до 98oС. Температура денатурации должна быть достаточной для полной денатурации - расщепления нитей ДНК и избежания "внезапного охлаждения" или быстрого отжига, однако, термостабильная ДНК-полимераза менее устойчива при высоких температурах. Таким образом, подбор оптимальных температурных параметров денатурации для соотношения праймер/образец (препарат ДНК) является важным условием при проведении амплификации. Если температура денатурации на первом этапе выше 95oС, рекомендуется добавлять ДНК-полимеразу в реакционную смесь после первичной денатурации. Продолжительность данного элемента этапа в ходе полимеразной цепной реакции (ПЦР) должна быть достаточной для полной денатурации ДНК, но в то же время не оказывать существенного влияния на активность ДНК-полимеразы при данной температуре.

Отжиг. Температура отжига (Та) - один из важнейших параметров полимеразной цепной реакции. Температура отжига для каждого конкретного праймера подбирается индивидуально. Она зависит от длинны и нуклеотидного состава праймера. Обычно она ниже на 2 - 4oС значения температуры плавления (Тm) праймера. Если температура отжига системы ниже оптимальной, то число неспецифических амплифицированных фрагментов возрастает и, наоборот, более высокая температура уменьшает количество амплифицированных продуктов. При этом концентрация специфических ампликонов может резко снижаться, вплоть до ингибирования полимеразной цепной реакции (ПЦР). Увеличение времени отжига также приводит к увеличению количества неспецифических ампликонов.

Элонгация. Обычно каждый вид термостабильной ДНК-полимеразы имеет индивидуальный температурный оптимум активности. Скорость синтеза ферментом комплементарной нити ДНК также является величиной специфичной для каждой полимеразы (в среднем она составляет 30 - 60 нуклеотидов в секунду, или 1 - 2 тыс. оснований в минуту), поэтому время элонгации подбирается в зависимости от типа ДНК-полимеразы и длинны амплифицируемого региона.


1.5.3 Основные принципы подбора праймеров

При создании ПЦР-тест-системы одной из основных задач является правильный подбор праймеров, которые должны отвечать ряду критериев:

Праймеры должны быть специфичны. Особое внимание уделяют 3-концам праймеров, т. к именно с них начинает достраивать комплементарную цепь ДНК Taq-полимераза. Если их специфичность недостаточна, то, вероятно, что в пробирке с реакционной смесью будут происходить нежелательные процессы, а именно, синтез неспецифической ДНК (коротких или длинных фрагментов). Она видна на электрофорезе в виде тяжелых или легких дополнительных полос. Это мешает оценке результатов реакции, т. к легко перепутать специфический продукт амплификации с синтезированной посторонней ДНК. Часть праймеров и дНТФ расходуется на синтез неспецифической ДНК, что приводит к значительной потере чувствительности.

Праймеры не должны образовывать димеры и петли, т.е. не должно образовываться устойчивых двойных цепей в результате отжига праймеров самих на себя или друг с другом.


1.5.4 Эффект "Плато"

Следует заметить, что процесс накопления специфических продуктов амплификации по геометрической прогрессии идет лишь ограниченное время, а затем его эффективность критически падает. Это связано с так называемым эффектом "плато".

Термин эффект плато используют для описания процесса накопления продуктов ПЦР на последних циклах амплификации.

В зависимости от условий и количества циклов реакции амплификации, на момент достижения эффекта плато влияют утилизация субстратов (дНТФ и праймеров), стабильность реактантов (дНТФ и фермента), количество ингибиторов, включая пирофосфаты и ДНК-дуплексы, конкуренция за реактанты неспецифическими продуктами или праймер-димерами, концентрация специфического продукта и неполная денатурация при высокой концентрации продуктов амплификации.

Чем меньше начальная концентрация ДНК-мишени, тем выше риск выхода реакции на плато". Этот момент может наступить до того, как количество специфических продуктов амплификации будет достаточно, чтобы их можно было проанализировать. Избежать этого позволяют лишь хорошо оптимизированные тест-системы.


1.5.5 Подготовка пробы биологического материала

Для выделения ДНК используют различные методики в зависимости от поставленных задач. Их суть заключается в экстракции (извлечении) ДНК из биопрепарата и удалении или нейтрализации посторонних примесей для получения препарата ДНК с чистотой, пригодной для постановки ПЦР.

Стандартной и ставшей уже классической считается методика получения чистого препарата ДНК, описанная Мармуром. Она включает в себя ферментативный протеолиз с последующей депротеинизацией и переосаждением ДНК спиртом. Этот метод позволяет получить чистый препарат ДНК. Однако он довольно трудоемок и предполагает работу с такими агрессивными и имеющими резкий запах веществами, как фенол и хлороформ.

Одним из популярных в настоящее время является метод выделения ДНК, предложенный Boom с соавторами. Этот метод основан на использовании для лизиса клеток сильного хаотропного агента - гуанидина тиоционата (GuSCN), и последующей сорбции ДНК на носителе (стеклянные бусы, диатомовая земля, стеклянное "молоко" и. т.д.). После отмывок в пробе остается ДНК, сорбированная на носителе, с которого она легко снимается с помощью элюирующего буфера. Метод удобен, технологичен и пригоден для подготовки образца к амплификации. Однако возможны потери ДНК вследствие необратимой сорбции на носителе, а также в процессе многочисленных отмывок. Особенно большое значение это имеет при работе с небольшими количествами ДНК в образце. Кроме того, даже следовые количества GuSCN могут ингибировать ПЦР. Поэтому при использовании этого метода очень важен правильный выбор сорбента и тщательное соблюдение технологических нюансов.

Другая группа методов пробоподготовки основана на использовании ионообменников типа Chilex, которые, в отличие от стекла, сорбируют не ДНК, а наоборот, примеси, мешающие реакции. Как правило, эта технология включает две стадии: кипячение образца и сорбция примесей на ионообменнике. Метод чрезвычайно привлекателен простотой исполнения. В большинстве случаев он пригоден для работы с клиническим материалом. К сожалению, иногда встречаются образцы с такими примесями, которые невозможно удалить с помощью ионообменников. Кроме того, некоторые микроорганизмы не поддаются разрушению простым кипячением. В этих случаях необходимо введение дополнительных стадий обработки образца.

Таким образом, к выбору метода пробоподготовки следует относиться с пониманием целей проведения предполагаемых анализов.


1.5.6 Амплификация

Для проведения реакции амплификации необходимо приготовить реакционную смесь и внести в нее анализируемый образец ДНК. При этом важно учитывать некоторые особенности отжига праймеров. Дело в том, что, как правило, в анализируемом биологическом образце присутствуют разнообразные молекулы ДНК, к которым используемые в реакции праймеры имеют частичную, а в некоторых случаях значительную, гомологию. Кроме того, праймеры могут отжигаться друг с другом, образуя праймер-димеры. И то, и другое приводит к значительному расходу праймеров на синтез побочных (неспецифических) продуктов реакции и, как следствие, значительно уменьшает чувствительность системы. Это затрудняет или делает невозможным чтение результатов реакции при проведении электрофореза.


1.6 Состав стандартной реакционной ПЦР смеси


х ПЦР буфер (100 мМ р-р Трис-HCl, pH 9,0, 500 мМ р-р KCl, 25 мМ р-р MgCl2) …….2,5 мкл

Вода (MilliQ) ……………………………………………………….18,8 мкл

Смесь нуклеотидтрифосфатов (дНТФ)

мМ р-р каждого……………………………………….……….0,5 мкл

Праймер 1 (10 мМ р-р) ………………………………………….….1 мкл

Праймер 2 (10 мМ р-р) ………………………………………….….1 мкл

ДНК-полимераза (5 ед. /мкл) ………………………………………0,2 мкл

Образец ДНК (20 нг/мкл) …………………………………………..1 мкл


1.7 Оценка результатов реакции


Для правильной оценки результатов ПЦР важно понимать, что данный метод не является количественным. Теоретически продукты амплификации единичных молекул ДНК-мишени могут быть обнаружены с помощью электрофореза уже после 30-35 циклов. Однако на практике это выполняется лишь в случаях, когда реакция проходит в условиях, близких к идеальным, что в жизни встречается не часто. Особенно большое влияние на эффективность амплификации оказывает степень чистоты препарата ДНК, т.е. наличие в реакционной смеси тех или иных ингибиторов, от которых избавиться в некоторых случаях бывает крайне сложно. Иногда, из-за их присутствия не удается амплифицировать даже десятки тысяч молекул ДНК-мишени. Таким образом, прямая связь между исходным количеством ДНК-мишени и конечным количеством продуктов амплификации часто отсутствует.

Глава 2: Применение Полимеразной цепной реакции


ПЦР используется во многих областях для проведения анализов и в научных экспериментах.

Криминалистика

ПЦР используют для сравнения так называемых "генетических отпечатков пальцев". Необходим образец генетического материала с места преступления - кровь, слюна, сперма, волосы и т.п. Его сравнивают с генетическим материалом подозреваемого. Достаточно совсем малого количества ДНК, теоретически - одной копии. ДНК расщепляют на фрагменты, затем амплифицируют с помощью ПЦР. Фрагменты разделяют с помощью электрофореза ДНК. Полученную картину расположения полос ДНК и называют генетическим отпечатком пальцев.

Установление отцовства

Результаты электрофореза ДНК-фрагментов, амплифицированных с помощью ПЦР. Отец. Ребенок. Мать. Ребенок унаследовал некоторые особенности генетического отпечатка обоих родителей, что дало новый, уникальный отпечаток.

Хотя "генетические отпечатки пальцев" уникальны, родственные связи все же можно установить, сделав несколько таких отпечатков. Тот же метод можно применить, слегка модифицировав его, для установления эволюционного родства среди организмов.

Медицинская диагностика

ПЦР дает возможность существенно ускорить и облегчить диагностику наследственных и вирусных заболеваний. Нужный ген амплифицируют с помощью ПЦР с использованием соответствующих праймеров, а затем секвенируют для определения мутаций. Вирусные инфекции можно обнаруживать сразу после заражения, за недели или месяцы до того, как проявятся симптомы заболевания.

Персонализированная медицина

Иногда лекарства оказываются токсичными или аллергенными для некоторых пациентов. Причины этого - отчасти в индивидуальных различиях в восприимчивости и метаболизме лекарств и их производных. Эти различия детерминируются на генетическом уровне. Например, у одного пациента определенный цитохром может быть более активен, у другого - менее. Для того, чтобы определить, какой разновидностью цитохрома обладает данный пациент, предложено проводить ПЦР-анализ перед применением лекарства. Такой анализ называют предварительным генотипированием.

Клонирование генов

Клонирование генов - это процесс выделения генов и, в результате генноинженерных манипуляций, получения большого количества продукта данного гена. ПЦР используется для того, чтобы амплифицировать ген, который затем вставляется в вектор - фрагмент ДНК, переносящий чужеродный ген в тот же самый или другой, удобный для выращивания, организм. В качестве векторов используют, например, плазмиды или вирусную ДНК. Вставку генов в чужеродный организм обычно используют для получения продукта этого гена - РНК или, чаще всего, белка. Таким образом в промышленных количествах получают многие белки для использования в сельском хозяйстве, медицине и др.

Секвенирование ДНК

В методе секвенирования с использованием меченых флуоресцентной меткой или радиоактивным изотопом дидезоксинуклеотидов ПЦР является неотъемлемой частью, так как именно в ходе полимеризации в цепь ДНК встраиваются производные нуклеотидов, меченые флуоресцентной или радиоактивной меткой. Это останавливает реакцию, позволяя определить положения специфических нуклеотидов после разделения синтезированных цепочек в геле.

Мутагенез

В настоящее время ПЦР стала основным методом проведения мутагенеза. Использование ПЦР позволило упростить и ускорить процедуру проведения мутагенеза, а также сделать её более надёжной и воспроизводимой.

Метод ПЦР позволил проанализировать наличие последовательностей вирусов папилломы человека в срезах биопсий новообразований шейки матки человека, залитых парафином за 40 лет до данного исследования. Более того, с помощью ПЦР удалось амплифицировать, и клонировать фрагменты митохондриальной ДНК из ископаемых останков мозга человека возраста 7 тысяч лет!

На лизатах индивидуальных сперматозоидов человека продемонстрирована возможность одновременно анализировать два локуса, расположенных на разных негомологичных хромосомах. Такой подход обеспечивает уникальную возможность тонкого генетического анализа и изучения хромосомной рекомбинации, ДНК-полиморфизма и др. Метод анализа индивидуальных сперматозоидов сразу нашел практическое применение в судебной медицине, так как HLA-типирование гаплоидных клеток позволяет определять отцовство или выявлять преступника (комплекс HLA представляет собой набор генов главного комплекса гистосовместимости человека; локусы комплекса HLA - наиболее полиморфные из всех известных у высших позвоночных: в пределах вида в каждом локусе существует необычайно большое число разных аллелей - альтернативных форм одного и того же гена).

Используя ПЦР, можно выявлять правильность интеграции чужеродных генетических структур в заранее определенный район генома изучаемых клеток. Суммарная клеточная ДНК отжигается с двумя олигонуклеотидными затравками, одна из которых комплементарна участку хозяйской ДНК вблизи точки встраивания, а другая - последовательности интегрированного фрагмента в антипараллельной цепи ДНК. Полимеразная цепная реакция в случае неизмененной структуры хромосомной ДНК в предполагаемом месте встройки приводит к образованию фрагментов одноцепочечной ДНК неопределенного размера, а в случае запланированной встройки - двухцепочечных фрагментов ДНК известного размера, определяемого расстоянием между местами отжига двух праймеров. Причем степень амплификации анализируемого района генома в первом случае будет находиться в линейной зависимости от количества циклов, а во втором - в экспоненциальной. Экспоненциальное накопление в процессе ПЦР амплифицируемого фрагмента заранее известного размера позволяет визуально наблюдать его после электрофоретического фракционирования препарата ДНК и делать однозначное заключение о встройке чужеродной последовательности в заданный район хромосомной ДНК.

Заключение


Самое широкое распространение метод ПЦР в настоящее время получил как метод диагностики различных инфекционных заболеваний. ПЦР позволяет выявить этиологию инфекции даже если в пробе, взятой на анализ, содержится всего несколько молекул ДНК возбудителя. ПЦР широко используется в ранней диагностики ВИЧ-инфекций, вирусных гепатитов и т.д. На сегодняшний день почти нет инфекционного агента, которого нельзя было бы выявить с помощью ПЦР.

Список использованной литературы


1.Падутов В.Е., Баранов О.Ю., Воропаев Е.В. Методы молекулярно - генетического анализа. - Мн.: Юнипол, 2007. - 176 с.

2.ПЦР "в реальном времени"/ Ребриков Д.В., Саматов Г.А., Трофимов Д.Ю. и др.; под ред. д. б. н. Д.В. Ребрикова; предисл. Л.А. Остермана и акад. РАН и РАСХН Е.Д. Свердлова; 2-е изд., испр. и доп. - М.: БИНОМ. Лаборатория знаний, 2009. - 223 с.

.Патрушев Л.И. Искусственные генетические системы. - М.: Наука, 2005. - В 2 т

.Б. Глик, Дж. Пастернак Молекулярная биотехнология. Принципы и применение 589 стр., 2002 г.

5.Щелкунов С.Н. Генетическая инженерия. - Новосибирск: Сиб. унив. издательствово, 2004. - 496 с.

Под редакцией А.А. Ворбьева "Полимеразная цепная реакция и ее применение для диагностики в дерматовенерологии"; Медицинское информационное агентство - 72 стр.

Http://ru. wikipedia.org

Http://scholar. google.ru

.

.

Http://www.med2000.ru/n1/n12. htm

12.http://prizvanie. su/ - медицинский журнал


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Полимеразная цепная реакция (ПЦР) – метод высокой точности в области диагностирования наследственных патологий, инфекций, вирусных болезней в любой стадии (острой или хронической), а также - на раннем этапе - до очевидных проявлений болезни путем идентификации возбудителей, на основе их ДНК, РНК, являющихся генетическим материалом, в пробах, которые получают от пациента. И сегодня мы поговорим про суть, этапы диагностики и принципы методов полимеразной цепной реакции (ПЦР), а также о ее стоимости.

Что такое полимеразная цепная реакция

Основа анализа - амплификация (удвоение) – создание множества копий из короткого участка ДНК (дезоксирибонуклеиновой кислоты), представляющей генетический комплекс человека. Для исследования нужно очень малое количество физиологического вещества (мокрота, каловые массы, соскоб эпителия, сок простаты, кровь, сперма, околоплодные воды, слизь, ткань плаценты, моча, слюна, жидкость плевральная, цереброспинальная). При этом, например, в мочеполовом тракте больного возможно обнаружение даже единичного вредоносного микроба.

Методику ПЦР (полимеразной цепной реакции) разработал американский ученый К. Мюллисом, в 1993 получивший Нобелевскую премию.

Активно используется:

  • в раннем диагностировании инфекций, генетических, ;
  • в судебно-медицинской экспертизе при наличии для исследования крайне малого количества ДНК;
  • в ветеринарной медицине, фармацевтике, биологии, молекулярной генетике;
  • для идентификации личности по ДНК, подтверждения отцовства;
  • в палеонтологии, антропологии, экологии (при отслеживании качества продуктов, факторов внешней среды).

О том, что такое полимеразная цепная реакция, расскажет в подробностях данное видео:

Кому ее назначают

Полимеразная цепная реакция в диагностике инфекционных заболеваний - одна из наиболее надежных методик особой точности и достоверности. К примеру, достоверность проведенного анализа ПЦР на хламидии и на многие другие патогены приближается к 100% (абсолютная). Чаще всего процедуру полимеразной цепной реакции назначают пациентам, у которых при диагностировании возникают сложности с идентификацией конкретного возбудителя.

Лабораторный тест ПЦР применяют:

  • для обнаружения болезнетворных организмов, вызывающих инфицирование мочевыводящих и половых органов, трудно идентифицируемых при использовании посевов или методов иммунологии;
  • для повторного диагностирования ВИЧ на начальной стадии в случае положительного, но вызывающего сомнения результата первичного анализа (например, у новорожденных от инфицированных СПИДом родителей);
  • для установления онкологического заболевания на раннем этапе (изучение мутаций онкогенов) и индивидуальной коррекции схемы лечения у конкретного пациента;
  • с целью раннего выявления и потенциального лечения наследственных патологий.

Так, будущие родители сдают анализ, чтобы узнать, являются ли они носителями генетической патологии, у детей ПЦР определяет вероятность подверженности болезни, передающейся по наследству.

  • для обнаружения патологий плода на раннем сроке вынашивания (отдельные клетки растущего эмбриона исследуют на наличие возможных мутаций);
  • у пациентов перед трансплантацией органов – для «тканевого типирования» (определения совместимости тканей);
  • для выявления опасных патогенных организмов в донорской крови;
  • у новорожденных малышей – для выявления скрытых инфекций;
  • для оценки результатов антивирусного и антимикробного лечения.

Зачем проходить такую процедуру

Поскольку ПЦР - высокоэффективный способ диагностики, дающий почти 100% результат, процедуру используют:

  • для подтверждения или исключения окончательного диагноза;
  • быстрой оценки эффективности проводимой терапии.

Во многих случаях ПЦР - единственно возможный тест для обнаружения развивающегося заболевания, если прочие бактериологические, иммунологические и вирусологические методики диагностирования оказываются бесполезными.

  • Вирусы обнаруживаются с помощью процедуры ПЦР сразу после инфицирования и до появления признаков болезни. Раннее выявление вируса позволяет оперативно назначить лечение.
  • Так называемая «вирусная нагрузка» (или - количество вирусов в организме) также определяется при анализе ДНК количественным методом.
  • Конкретные болезнетворные организмы (например, туберкулезную палочку Коха) сложно и слишком долго культивировать. Анализ ПЦР позволяет быстро выявить минимальное количество патогенов (живых и мертвых) в образцах, удобных для исследования.

Подробный анализ ДНК патогена используется:

  • чтобы определить его чувствительность к конкретным видам антибиотиков, что позволяет немедленно приступить к лечению;
  • чтобы контролировать распространение эпидемий среди домашних, диких животных;
  • чтобы выявить и отслеживать новые заразные виды микробов и подтипы патогенов, которые спровоцировали предыдущие эпидемии.

Виды диагностики

Стандартный метод

Анализ полимеразно-цепной реакции проводится на основе многократной амплификации (удвоения) конкретного фрагмента ДНК и РНК при использовании особых ферментов-праймеров. В результате цепочки копирования получается количество материала, достаточное для исследования.

В ходе процедуры копируется только искомый фрагмент (соответствующий заданным конкретным условиям) и в случае, если он действительно присутствует в пробе.

О том, как проходит ПЦР, рассказывает это подробное видео с полезными схемами:

Другие методы

  • ПЦР, проводимая в режиме реального времени . В этом виде исследования процесс выявления заданного фрагмента ДНК запускается после прохождения каждого цикла, а не после осуществления всей цепочки 30 – 40 циклов. Этот вид исследования позволяет получить информацию о количестве патогена (вируса или микроба) в организме, то есть осуществлять количественный анализ.
  • ОТ-ПЦР (режим обратной транскрипции) . Этот анализ используют, чтобы найти РНК с одной цепочкой для обнаружения вирусов, генетической базой которых является именно РНК (например, вирус гепатита С, иммунодефицита). При таком исследовании используется особый фермент - обратная транскриптаза и определенный праймер и на базе РНК строится одноцепочная ДНК. Затем из этой цепочки восстанавливают вторую цепь ДНК и выполняется стандартная процедура.

Показания для проведения

Процедура ПЦР применяется в клинике инфекционных болезней, неонатологии, акушерстве, педиатрии, урологии, гинекологии, венерологии, неврологии, нефрологии, офтальмологии.

Показания для назначения анализа:

  • выяснение риска развития генетических отклонений у ребенка при вероятности наследственных патологий;
  • диагностирование обоих родителей при планировании беременности или тяжелом состоянии матери при протекающей беременности;
  • трудности с зачатием, выявление причин бесплодия;
  • подозрение на половые инфекции в острой стадии и при симптоматике перехода их в хроническую;
  • обнаружение причин воспалительных процессов неясного происхождения;
  • незащищенные случайные и постоянные половые контакты;
  • определение чувствительности патогенного микроорганизма к конкретным антибиотикам;
  • пациентам с подозрением на скрытую инфекцию для обнаружения патогенов до развития явной симптоматики (доклиническое диагностирование);
  • больным для подтверждения выздоровления после болезни (ретроспективная диагностика);:

Также используется диагностика при необходимости точного выявления следующих возбудителей::

  • вирусы гепатита (A B C G), иммунодефицита человека, цитомегаловирус;
  • вибрион холерный;
  • вирус простого герпеса, герпетиформные виды;
  • ретро – адено – и риновирусы;
  • вирусы краснухи, Эпштейна-Барр, варицелла (Зостер – вирус);
  • парво – и пикорновирусы;
  • бактерия Helicobacter pylori;
  • легионеллы, патогенные типы палочки кишечной;
  • стафилококк золотистый;
  • возбудитель ;
  • клостридии, дифтерийная и гемофильная палочка;

Используется и для определения инфекций:

  • инфекционный мононуклеоз;
  • боррелиоз, листериоз, клещевой энцефалит;
  • кандидоз, вызываемый грибками Candida;
  • половые инфекции – трихомониаз, уреаплазмоз, бледная трепонема, гарднереллез, гонорея, микоплазмоз, хламидиоз;
  • туберкулез.

Противопоказания для проведения

Поскольку процедура проводится не с пациентом, без какого-либо воздействия на организм, а с биологическим материалом, взятым для исследования, то никаких противопоказаний для ПЦР не имеется по причине отсутствия потенциальной опасности.

Однако забор биоматериала из шеечного канала матки не проводят после процедуры кольпоскопии. Сдача мазков, соскобов на анализ разрешена только через 4 – 6 дней после окончания менструации и полного прекращения выделений.

Безопасен ли метод

Никакое негативное влияние на пациента при изолированном исследовании его биоматериала в лабораторных условиях невозможно.

Подготовка к процедуре (сдача биологических веществ на анализ)

В качестве образца для анализа ПЦР, при котором выявляют ДНК чужеродного патогена, служит любая биологическая жидкость, ткань, выделения организма. Забор исследуемого вещества проводят в виде взятия крови из вены, соскоба из гортани, полости носа, мочеиспускательного канала, плевральной полости, шейки матки.

Перед диагностической процедурой врач объясняет пациенту, забор какого материала будет взят:

  1. При обследовании на половые инфекции, производится забор выделений из половых органов, моча, мазок из уретры.
  2. При анализе на герпетические инфекции, цитомегаловирус, мононуклеоз – берут на анализ мочу, мазок из зева, на гепатит, токсоплазмоз - кровь из вены.
  3. С целью диагностирования различных видов проводится забор спинномозговой жидкости.
  4. В пульмонологии образцы для анализа - мокрота и жидкость плевральная.
  5. Когда проводят исследование возможных внутриутробных инфекций при вынашивании плода для анализа используют околоплодные воды и клетки плаценты.

Достоверность и точность анализа зависит от стерильности условий при взятии материала. Поскольку исследование ПЦР обладает высокой чувствительностью, любое загрязнение исследуемого вещества способно искажать результат.

Грамотная подготовка к сдаче биоматериала не представляет для пациентов никаких трудностей. Имеются определенные рекомендации:

  • при анализе на половые инфекции:
    • исключить интимные контакты за 72 часа до сдачи материала;
    • прекратить использование любых вагинальных средств за 3 суток;
    • с вечера предыдущего дня не проводить гигиену исследуемой области;
    • исключить мочеиспускание за 3 – 4 часа при взятии пробы из уретры;
  • прекратить прием антибиотиков за месяц до сдачи анализов на инфекции;
  • кровь сдают утром до принятия еды и питья;
  • сбор первой утренней порции мочи проводится в стерильный контейнер после тщательного интимного туалета.

О том, как проводится диагностика по методике полимеразной цепной реакции, читайте ниже.

Как проходит процедура

При выполнении исследования ПЦР раз за разом в реакторе (амплификаторе или термоциклере) повторяются определенные циклы:

  1. Первый шаг – денатурация . Слюну, кровь, биоптат, гинекологические пробы, мокроту, в которых подозревается присутствие ДНК (или РНК) патогена, помещают в амплификатор, где происходит нагревание материала и расщепление ДНК на две отдельные цепочки.
  2. Второй шаг – отжиг или небольшое охлаждение материала и добавление к нему праймеров, способных распознавать нужные участки в молекуле ДНК и связываться с ними.
  3. Третий шаг – элонгация – происходит после присоединения 2 праймеров к каждой из цепочек ДНК. В ходе процесса фрагмент ДНК патогена достраивается, и формируется его копия.

Эти циклы повторяются по типу «цепной реакции», каждый раз приводя к удвоению копий специфичного фрагмента ДНК (например, отрезка, где запрограммирован определенный вирус). За несколько часов образуется множество копий фрагмента ДНК, и выявляется их присутствие в образце. После этого проводят анализ и сравнение результатов с данными базы различных видов патогенов, чтобы определить вид инфекции.

Про расшифровку результатов и вывод исходя из ПЦР-реакции читайте ниже.

Расшифровка результатов

Окончательный результат исследования выдается через 1 – 2 суток после сдачи биологического материала. Нередко – уже в первые сутки после анализа.

Качественный анализ

  • Отрицательный результат означает, что в веществе, сданном на исследование, следов возбудителей инфекции не обнаружено.
  • Положительный результат означает выявление патогенных вирусов или бактерий в биологическом образце с очень высокой степенью точности на момент сдачи материала.

Если результат положительный, но признаков активизации инфекции не выявлено – такое состояние организма называют бессимптомным «здоровым носительством». Чаще всего наблюдается при взятии биоматериала из определенного места (цервикальный канал, уретра, полость рта) при вирусных заболеваниях. Лечения в этом случае не требуется, но обязательно постоянное врачебное наблюдение, поскольку существует вероятность:

  • распространения вируса от носителей и заражение здоровых людей;
  • активизации процесса и переход заболевания в хроническую форму.

Однако - если положительным является анализ крови, это указывает на то, что инфекция поразила организм, и это уже не состояние носительства, а патология, требующая незамедлительной специфической терапии.

Количественный анализ

Количественный результат определяет специалист конкретно для определенного вида инфекции. На его основании можно оценить степень развития, стадию болезни, что дает возможность оперативно назначить правильное лечение.

Средняя стоимость

Цены на проведение полимеразной цепной реакции определяют: вид исследования, сложность идентификации возбудителя, трудность забора биологического материала, вид анализа (качественный или количественный), уровень цен в лаборатории.

С другой стороны, при исследовании ПЦР можно определить сразу несколько патогенов при заборе одного вида материала для анализа. Это позволяет сэкономить на других лабораторных анализах.

Ориентировочно, стоимость анализа ПЦР в рублях:

  • гонококк, гарднерелла, трихомонада вагиналис – от 180
  • хламидия трахоматис – от 190
  • папилломавирус – от 380 до 500
  • биоценоз урогенитального тракта у женщин (количественная и качественная оценка микрофлоры) – от 800.

Еще больше полезной информации в отношении исследования ПЦР содержится в видеосюжете ниже: